

FIBOCOM L850-GL Series Hardware Guide

Version: V1.1.5 Date: 2020-06-20

Applicability Type

No.	Product Model	Description
1	L850-GL-00	NA
2	L850-GL-01	NA
3	L850-GL-02	NA
4	L850-GL-03	NA
5	L850-GL-05	NA
6	L850-GL-10	L850-GL-10 series (except L850-GL-10-06)
7	L850-GL-10-06	NA
8	L850-GL-12	NA
9	L850-GL-20	NA

Copyright

Copyright © 2020 Fibocom Wireless Inc. All rights reserved.

Without the prior written permission of the copyright holder, any company or individual is prohibited to excerpt, copy any part of or the entire document, or distribute the document in any form.

Notice

The document is subject to update from time to time owing to the product version upgrade or other reasons. Unless otherwise specified, the document only serves as the user guide. All the statements, information and suggestions contained in the document do not constitute any explicit or implicit guarantee.

Trademark

-ibocom

The trademark is registered and owned by Fibocom Wireless Inc.

Change History

Version	Author	Date	Remark
V1.1.5	Shu Ying	2020-06-20	 Section 3.3.1, add FCPO# controlling GPIO request Section 3.4.1.2, change PEWAKE# pull high resistor to 100KΩ
V1.1.4	Li Senhao	2020-04-01	 Section 3.1.2, add GPIO design request Section 3.3.4, add CLKREQ# and PEWAKE# requests
V1.1.3	Guan Xiangyang	2019-12-26	 Section 3.3.1.2, add minimum PCIe detection time note Section 3.3.5, add timing application instruction Section 3.4.1.2, add a pull-up resistor on CLKREQ# Section 3.9, add note about the direction of MIPI signal Section 4.1.4, add RF connector assembly Section 4.5, update GNSS performance table
V1.1.2	Guan Xiangyang	2019-09-06	Add L850-GL-20 product model
V1.1.1 V1.1.0	Guan Xiangyang Lei Daijun	2019-08-22 2019-05-05	 Add L850-GL-10-06 and L850-GL-20 part numbers Section 2.2, list supporting RF bands of all product Section 3.4, add Chrome OS support in USB interface Section 3.3, add note of PERST# control timing in USB Section 4.3, modify LTE Band5 TX power range Section 3.2.3, update power consumption Section 3.3, update module control timing Section 4.5, update GNSS consumption Section 3.9, modify MIPI-RFFE power domain Section 5.6, update packing Section 3.4.1.2, fix Figure 3-12 abnormal display in PDF converting
V1.0.9	Lei Daijun	2018-08-06	Add L850-GL-12 part no
V1.0.8	Lei Daijun	2018-07-13	Modify band 30 TX power range of L850-GL-03 serial module
V1.0.7	Lei Daijun	2018-06-26	 Update package Add note about PERST#/CLK_REQ# 3.3V support Add antenna of B30 requirement, update power consumption and RX sensitivity
V1.0.6	Lei Daijun	2018-02-26	Modify COEX pin defineDelete L850-GL-02 product model

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All Rights Reserved.

Version	Author	Date	Remark
			Modify CA combinations and TDD data throughput
V1.0.5	Lei Daijun	2018-01-16	 Modify description of power consumption condition
			Optimize power on/off/reset timing
V1.0.4	Loi Doilun	2017 12 06	Update Storage and packing and PCIe signal
V1.0.4	V1.0.4 Lei Daijun 2017-12-06		description, power consumption, CA combine
	Lei Daijun	2017-07-26	 Update timing of power on/off and reset
			 Update PCIe, add USB support
V1.0.3			Update power consumption, TX power, RX sensitivity
			and other data
V/1 0 0		2017 02 00	Update the content of PCIe
V1.0.2	Lei Daijun	2017-02-09	 Add the power Consumption of 3CA
1/1 0 1		2016-12-16	 Modify the PCIe Interface Application;
V1.0.1	Lei Daijun	2010-12-10	 Update the Pin Definition: change pin65 to NC
V1.0.0	Lei Daijun	2016-12-08	Initial version

Fibocom Contents

1	Foreword				9
	1.1		Introdu	uction	9
	1.2		Refere	ence Standard	9
	1.3		Relate	d Documents	9
2	Ove	ervie	€w		10
	2.1		Introdu	uction	10
	2.2		Specif	ication	10
	2.3		CA Co	mbinations	12
	2.4		Applic	ation Framework	13
	2.5			are Block Diagram	
3	Арр			nterface	
	3.1			terface	
		3.1.1	1 Pi	п Мар	15
		3.1.2		n Definition	
	3.2			Supply	
		3.2.1	1 Pc	ower Supply	20
		3.2.2		ogic Level	
		3.2.3		ower Consumption	
	3.3		Contro	ol Signal	25
		3.3.1	1 M	odule Start-Up	
			3.3.1.1	Start-up Circuit	25
			3.3.1.2	Start-up Timing Sequence	
		3.3.2	2 M	odule Shutdown	27
		3.3.3	3 M	odule Reset	28
		3.3.4	4 P(Cle Link State	29
			3.3.4.1	D0 L1.2	
			3.3.4.2	D3cold L2	
		3.3.5	5 Ti	ming Application	32
	3.4		IPC In	terface	
		3.4.1	1 P	Cle Interface	33
			3.4.1.1	PCIe Interface Definition	
			3.4.1.2	PCIe Interface Application	
		3.4.2	2 U	SB Interface	35

		3.4.2.1	1 USB Interface Definition	36
		3.4.2.2	2 USB2.0 Interface Application	36
		3.4.2.3	3 USB3.0 Interface Application	36
	3.5	USIM	1 Interface	. 37
	3.5	5.1 L	JSIM Pins	37
	3.5	5.2 L	JSIM Interface Circuit	38
		3.5.2.1	1 N.C. SIM Card Slot	38
		3.5.2.2	2 N.O. SIM Card Slot	38
	3.5	5.3 L	JSIM Hot-Plug	39
	3.5	5.4 L	JSIM Design	39
	3.6	Statu	s Indicator	. 40
	3.6		.ED#1 Signal	
	3.7	Interr	rupt Control	. 41
	3.7	7.1 V	N_DISABLE1#	41
	3.7		BODYSAR	
	3.8	Clock	< Interface	. 41
	3.9	ANT	Tunable Interface	. 42
	3.10	Confi	guration Interface	. 42
4	Radio	Frequ	Jency	.44
	4.1		iterface	
	4.1	1.1 F	RF Interface Functionality	44
	4.1	1.2 F	RF Connector Characteristic	44
	4.1	1.3 F	RF Connector Dimension	44
	4.1	1.4 F	RF Connector Assembly	46
	4.2	Opera	ating Band	. 48
	4.3	Trans	smitting Power	. 49
	4.4	Rece	iver Sensitivity	. 50
	4.5	GNS	s	. 51
	4.6	Anter	nna Design	. 52
~				
5	Struct	ture Sp	pecification	.54
5	Struct 5.1	-	uct Appearance	
5		Produ		. 54
5	5.1	Produ Dime	uct Appearance	. 54 . 54

5.5	Sto	rage	56
	5.5.1	Storage Life	56
5.6	Pac	cking	56
	5.6.1	Tray Package	56
	5.6.2	Tray Size	59

Fibccom 1 Foreword

1.1 Introduction

The document describes the electrical characteristics, RF performance, dimensions and application environment, etc. of L850-GL (hereinafter referred to as L850). With the assistance of the document and other instructions, the developers can quickly understand the hardware functions of L850 modules and develop products.

1.2 Reference Standard

The design of the product complies with the following standards:

- 3GPP TS 34.121-1 V8.11.0: User Equipment (UE) conformance specification; Radio transmission and reception (FDD); Part 1: Conformance specification
- 3GPP TS 34.122 V11.13.0: Technical Specification Group Radio Access Network; Radio transmission and reception (TDD)
- 3GPP TS 36.521-1 V11.4.0: User Equipment (UE) conformance specification; Radio transmission and reception; Part 1: Conformance testing
- 3GPP TS 21.111 V10.0.0: USIM and IC card requirements
- 3GPP TS 51.011 V4.15.0: Specification of the Subscriber Identity Module -Mobile Equipment (SIM-ME) interface
- 3GPP TS 31.102 V10.11.0: Characteristics of the Universal Subscriber Identity Module (USIM) application
- 3GPP TS 31.11 V10.16.0: Universal Subscriber Identity Module (USIM) Application Toolkit(USAT)
- 3GPP TS 36.124 V10.3.0: Electro Magnetic Compatibility (EMC) requirements for mobile terminals and ancillary equipment
- 3GPP TS 27.007 V10.0.8: AT command set for User Equipment (UE)
- 3GPP TS 27.005 V10.0.1: Use of Data Terminal Equipment Data Circuit terminating Equipment (DTE DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)
- PCI Express M.2 Specification Rev1.2

1.3 Related Documents

• FIBOCOM Design Guide_RF Antenna

2 Overview

2.1 Introduction

L850 is a highly integrated 4G WWAN module which uses M.2 form factor interface. It supports LTE FDD/LTE TDD/WCDMA systems and can be applied to most cellular networks of mobile carrier in the world.

2.2 Specification

Specification				
	L850-GL-00, L850-GL-01,	LTE FDD: Band 1, 2, 3, 4, 5, 7, 8, 11, 12, 13, 17, 18,		
	L850-GL-02, L850-GL-03,	19, 20, 21, 26, 28, 29, 30, 66		
	L850-GL-05, L850-GL-10	LTE TDD: Band 38, 39, 40, 41		
Operating Band	series (except L850-GL-			
operating Dana	10-06)	MCDMA/USDAL: Dond 1 2 4 5 9		
	L850-GL-12	WCDMA/HSPA+: Band 1, 2, 4, 5, 8		
	L850-GL-20			
	L850-GL-10-06	LTE FDD: Band 2, 4, 5, 13		
GNSS	Support GPS, GLONASS, E	BDS		
LTE	3GPP Release 11			
UMTS	3GPP Release 8			
	LTE FDD	450Mbps DL(Cat 9)/50Mbps UL(Cat 4)		
		347Mbps DL(Cat 9)/30Mbps UL(Cat 4)		
	LTE TDD	When LTE TDD achieves maximum DL rate, its UL		
Data Transmission		rate can reach 10Mbps only		
		UMTS: 384 kbps DL/384 kbps UL		
	UMTS/HSPA+	DC-HSPA+: 42Mbps DL(Cat 24)/5.76Mbps UL(Cat6)		
Power Supply	DC 3.135V~4.4V, Typical 3.	3V		
	Normal operating temperati	ure: -10°C~+55°C		
Temperature	Extended operating temperature: -20°C~+65°C			
	Storage temperature: -40°C~+85°C			
	Interface: M.2 Key-B			
Physical	Dimension: 30×42×2.3mm			
characteristics	Weight: About 6.2 g			

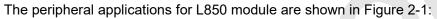
Reproduction forbidden without Fibocom Wireless Inc. written authorization - All Rights Reserved.

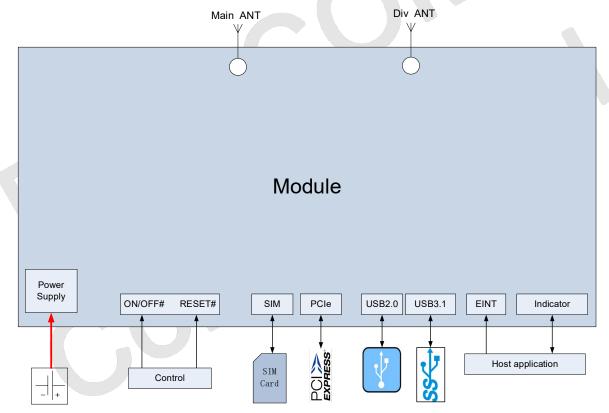
Interface			
	WWAN Main Antenna ×1		
Antenna Connector	WWAN Diversity Antenna ×1		
	USIM 3V/1.8V		
	PCle Gen1 ×1		
	USB 2.0		
	USB 3.1 Gen1 (Base on Android/Linux)		
	W_Disable#		
Function Interface	BodySAR		
	LED		
	Clock		
	Tunable antenna		
	I2S (Reserved)		
	I2C (Reserved)		
Software			
Protocol Stack	IPV4/IPV6		
AT commands	3GPP TS 27.007 and 27.005		
Firmware update	PCle		
	Multiple carrier		
Other feature	Windows MBIM support		
	Windows update		

Note:

When temperature goes beyond normal operating temperature range of -10°C~+55°C, RF performance of module may be slightly off 3GPP specifications. For normal operating temperature, LTE FDD Band 4 and 13 can support temperature ranging from -20° C to +60° C.

CA Combinations


L850-GL-00, L850-GL-01, L850-GL-02, L850-GL-03, L850-GL-05, L850-GL-10 series (except L850-GL-10-06).L850-GL-12, L850-GL-20

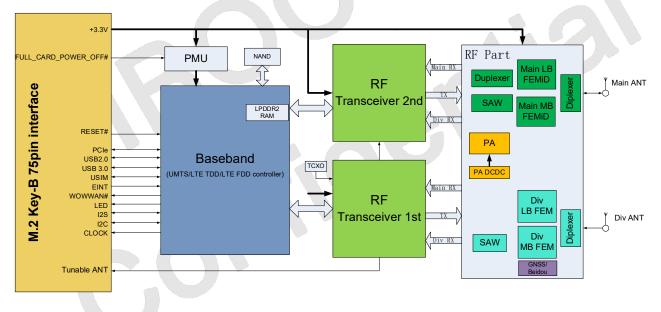

GL-10-06),L	.850-GL-12, L850-GL-20	
		1+3, 5, 8, 11, 18, 19, 20, 21, 26
		2+4, 5, 12, 13, 17, 29, 30, 66
		3+5, 7, 8, 19, 20, 28
		4+5, 12, 13, 17, 29, 30
		5+7, 30, 66
20.4	Inter-band	7+20, 28
2CA		8+11
		12+30
		13+66
		29+30
	Intra-band (non-contiguous)	2, 3, 4, 7, 41
	Intra-band (contiguous)	2, 3, 7, 40, 41
		1+3+7, 1+3+8, 1+3+19, 1+3+20, 1+3+28, 1+7+20,
		1+7+28, 1+8+11, 1+19+21
	Inter-band	2+4+5, 2+4+13, 2+5+30, 2+12+30, 2+29+30, 2+5+66,
		2+13+66
		3+7+20, 3+7+28
		4+5+30, 4+12+30, 4+29+30
3CA	2 intra-band (non-contiguous)	2+2+5, 2+2+13
	plus inter-band	4+4+5, 4+4+13
		2+2+29
	2 intra-band (contiguous)	3+3+1, 3+3+5, 3+3+7, 3+3+20, 3+3+28
	plus inter-band	2+66+66, 5+66+66, 13+66+66
		7+7+3, 7+7+28
	Intra-band (non-contiguous)	41, 66
	Intra-band (contiguous)	40, 41, 66
		41, 66

CA Combinations L850-GL-10-06			
		2+4, 5, 13	
	Inter-band	4+5, 13	
2CA	Intra-band (non-contiguous)	2, 4	
	Intra-band (contiguous)	2	
	Inter-band	2+4+5, 2+4+13	
3CA	2 intra-band (non-contiguous)	2+2+5, 2+2+13	
	plus inter-band	4+4+5, 4+4+13	

2.4 Application Framework

Figure 2-1 Application framework

2.5 Hardware Block Diagram


The hardware block diagram in Figure 2-2 shows the main hardware functions of L850 module, including baseband and RF functions.

Baseband contains the followings:

- UMTS/LTE TDD/LTE FDD controller
- PMU
- NAND/internal LPDDR2 RAM
- Application interface

RF contains the followings:

- RF Transceiver
- RF Power/PA
- RF Front end
- RF Filter
- Antenna Connector

3 Application Interface

3.1 M.2 Interface

The L850 module applies standard M.2 Key-B interface, with a total of 75 pins.

3.1.1 Pin Map

		CONFIG_2	75
74	+3.3V	GND	73
72	+3.3V	GND	71
70	+3.3V	CONFIG_1	69
68	NC	RESET#(1.8V)	67
66	SIM_DETECT(1.8V)	NC	65
64	COEX_TXD(1.8V)	ANTCTL2(1.8V)	63
62	COEX_RXD(1.8V)	ANTCTL1(1.8V)	61
60	COEX3(1.8V)	ANTCTL0(1.8V)	59
58	RFFE_SDATA(1.8V)	GND	57
56	RFFE_SCLK(1.8V)	REFCLKP	55
54	PEWAKE# (3.3V)	REFCLKN	53
52	CLKREQ# (3.3V)	GND	51
50	PERST# (3.3V)	PERp0	49
48	TX_BLANKING(1.8V)	PERn0	47
46	SYSCLK(1.8V)	GND	45
44	GNSS_IRQ(1.8V)	PETp0	43
42	GNSS_SDA(1.8V)	PETn0	41
40	GNSS_SCL(1.8V)	GND	39
38	NC	USB3.0 RX+	37
36	UIM_PWR	USB3.0_RX-	35
34	UIM_DATA	 GND	33
32	UIM_CLK	USB3.0 TX+	31
30	UIM_RESET	 USB3.0 TX-	29
28	I2S_WA(1.8V)	 GND	27
26	W_DISABLE2#(3.3/1.8V)	DPR(3.3/1.8V)	25
24	I2S_TX(1.8V)	WOWWAN#(1.8V)	23
22	I2S_RX(1.8V)	CONFIG 0	21
20	I2S_CLK(1.8V)	Notch	
	Notch	GND	11
10	LED1#(3.3V OD)	USB D-	9
8	W_DISABLE1#(3.3/1.8V)	USB D+	7
6	FULL_CARD_POWER_OFF#(3.3/1.8V)	GND	5
4	+3.3V	GND	3
2	+3.3V	CONFIG 3	1

Figure 3-1 Pin map

Note:

Pin "Notch" represents the gap of the gold fingers.

3.1.2 Pin Definition

The pin definition is as follows:

Pin	Pin Name	I/O	Reset Value	Pin Description	Туре
1	CONFIG_3	0	NC	NC, L850 M.2 module is configured as the WWAN – PCIe, USB3.1 interface type	-
2	+3.3V	ΡI	-	Power input	Power Supply
3	GND	-	-	GND	Power Supply
4	+3.3V	ΡI	-	Power input	Power Supply
5	GND	-	-	GND	Power Supply
6	FULL_CARD_ POWER_OFF#	I	PU	Power enable, module power on input, internal pull up	3.3/1.8V
7	USB D+	I/O	-	USB data plus	0.33V
8	W_DISABLE1#	I	PD	WWAN disable, active low	3.3/1.8V
9	USB D-	I/O	-	USB data minus	0.33V
10	LED1#	0	т	System status LED, output open drain, 3.3V	3.3V
11	GND	-	-	GND	Power Supply
12	Notch			Notch	
13	Notch			Notch	
14	Notch			Notch	
15	Notch			Notch	
16	Notch			Notch	
17	Notch			Notch	
18	Notch			Notch	
19	Notch			Notch	
20	I2S_CLK	0	PD	I2S serial clock, Reserved	1.8V
21	CONFIG_0	-	GND	GND, L850 M.2 module is configured as the WWAN – PCIe, USB3.1 interface type	-
22	I2S_RX	I	PD	I2S serial receive data, Reserved	1.8V

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All Rights Reserved.

Pin	Pin Name	I/O	Reset Value	Pin Description	Туре
23	WOWWAN#	0	PD	Wake up host, Reserved	1.8V
24	12S_TX	0	PD	I2S serial transmit data, Reserved	1.8V
25	DPR	1	PU	BodySAR detect, active low	3.3/1.8V
26	W_DISABLE2#	1	PU	GNSS disable, active low, Reserved	3.3/1.8V
27	GND	-	-	GND	Power Supply
28	I2S_WA	ο	PD	I2S word alignment/select, Reserved	1.8V
29	USB3.0_TX-	0	-	USB3.0 transmit data minus	-
30	UIM_RESET	0	L	SIM reset signal	1.8V/3V
31	USB3.0_TX+	0	-	USB3.0 transmit data plus	-
32	UIM_CLK	0	L	SIM clock signal	1.8V/3V
33	GND	-	-	GND	Power Supply
34	UIM_DATA	I/O	L	SIM data input/output	1.8V/3V
35	USB3.0_RX-	5		USB3.0 receive data minūs	-
36	UIM_PWR	0	-	SIM power supply, 3V/1.8V	1.8V/3V
37	USB3.0_RX+	1	-	USB3.0 receive data plus	-
38	NC	-	-	NC	-
39	GND	-	-	GND	Power Supply
40	GNSS_SCL	6	PU	I2C serial clock input, Reserved	1.8V
41	PETn0	0	-	PCIe TX differential signal Negative	-
42	GNSS_SDA	I/O	PU	I2C serial data input/output, Reserved	1.8V
43	PETp0	0	-	PCIe TX differential signal Positive	-
44	GNSS_IRQ	ο	PD	GNSS interrupt request output, Reserved	1.8V
45	GND	-	-	GND	Power Supply

Pin	Pin Name	I/O	Reset Value	Pin Description	Туре
46	SYSCLK	0	PD	26M clock output	1.8V
47	PERn0	1	-	PCIe RX differential signal Negative	-
48	TX_BLANKING	0	PD	PA blanking timer, Reserved	1.8V
49	PERp0	I	-	PCIe RX differential signal Positive	-
50	PERST#	1	PU	Asserted to reset module PCIe interface default. If module went into core dump, it will reset whole module, not only PCIe interface. Active low, internal pull up(10KΩ)	3.3V
51	GND	-	-	GND	Power Supply
52	CLKREQ#	1/0	PU	Asserted by device to request a PCIe reference clock be available (active clock state) in order to transmit data. It also used by L1 PM Sub states mechanism, asserted by either host or device to initiate an L1 exit. Active low, internal pull $up(10K\Omega)$	3.3V
53	REFCLKN	I	-	PCIe reference clock signal, Negative	-
54	PEWAKE#	0		Asserted to wake up system and reactivate PCIe link from L2 to L0, it depends on system whether supports wake up functionality. Active low, open drain output and should add external pull up(100KΩ) on platform	3.3V
55	REFCLKP	I	-	PCIe reference clock signal, Positive	-
56	RFFE_SCLK	0	-	MIPI interface tunable ANT, RFFE clock	1.8V
57	GND	-	-	GND	Power Supply
58	RFFE_SDATA	0	-	MIPI interface tunable ANT, RFFE data	1.8V

Pin	Pin Name	I/O	Reset Value	Pin Description	Туре
59	ANTCTL0	0	-	Tunable ANT CTRL0, bit0	1.8V
60	COEX3	I/O	PD	Wireless coexistence between WWAN and WiFi/BT modules, based on BT-SIG coexistence protocol. COEX_EXT_FTA, Reserved	1.8V
61	ANTCTL1	0	-	Tunable ANT CTRL1, bit1	1.8V
62	COEX_RXD	1	Т	Wireless coexistence between WWAN and WiFi/BT modules, based on BT-SIG coexistence protocol. UART receive signal(WWAN module side) Reserved	1.8V
63	ANTCTL2	0	-	Tunable ANT CTRL2, bit2	1.8V
64	COEX_TXD	0	т	Wireless coexistence between WWAN and WiFi/BT modules, based on BT-SIG coexistence protocol. UART transmit signal(WWAN module side), Reserved	1.8V
65	NC	- ($\left(\cdot \right)$	NC	
66	SIM_DETECT	5	PD	SIM detect, internal pull up(390K Ω), active high	1.8V
67	RESET#	1	-	WWAN reset input, internal pull up(10KΩ), active low	1.8V
68	NC	-	-	NC	-
69	CONFIG_1	0	GND	GND, L850 M.2 module is configured as the WWAN – PCIe, USB3.1 interface type	-
70	+3.3V	PI	-	Power input	Power Supply
71	GND	-	-	GND	Power Supply
72	+3.3V	PI	-	Power input	Power Supply
73	GND	-	-	GND	Power Supply
74	+3.3V	ΡI	-	Power input	Power Supply
75	CONFIG_2	0	GND	GND, L850 M.2 module is configured as the WWAN – PCIe, USB3.1 interface type	-

Reset Value: The initial status after module reset, not the status when working.

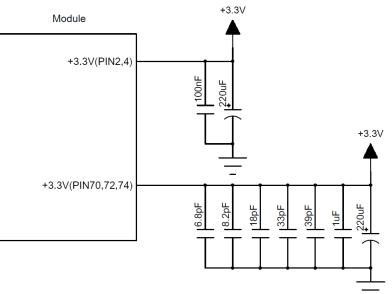
- H: High Voltage Level
- L: Low Voltage Level
- PD: Pull-Down
- PU: Pull-Up
- T: Tristate
- OD: Open Drain
- PP: Push-Pull
- PI: Power Input
- PO: Power Output

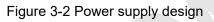
Digital IO pins CANNOT be connected to power directly.

The unused pins can be left floating.

- All 3.3V ports are based on +3.3V power domain. When the power supply range is
- 3.135V~4.4V, the 3.3V ports voltage will follow the change of power supply range.

3.2 Power Supply


The power interface of L850 module is shown in the following table:


				DC Parameter (V)		
Pin	Pin Name	I/O	Pin Description	Minimum Value	Typical Value	Maximum Value
2, 4, 70, 72, 74	+3.3V	PI	Power supply input	3.135	3.3	4.4
36	UIM_PWR	PO	USIM power supply	-	1.8V/3V	-

L850 module uses PCIe interface. According to the PCIe specification, the PCIe Vmain should be used as the +3.3V power source, not the Vaux. The Vaux is the PCIe backup power source and it is not sufficient as the power supply. In addition, the DC/DC power supply other than PCIe ports should not be used as the external power cannot control the module status through the PCIe protocol.

3.2.1 Power Supply

The L850 module should be powered through the +3.3V pins, and the power supply design is shown in Figure 3-2:

The filter capacitor design for power supply is shown in the following table:

Recommended Capacitance	Application	Description
220uF×2	Voltage-stabilizing capacitors	 Reduce power fluctuations of the module in operation, requiring capacitors with low ESR. LDO or DC/DC power supply requires the capacitor of no less than 440uF The capacitor for battery power supply can be reduced to 100~200uF
1uF, 100nF	Digital signal noise	Filter out the interference generated from the clock and digital signals
39pF, 33pF	700/800, 850/900 MHz frequency band	Filter out low frequency band RF interference
18pF, 8.2pF, 6.8pF	1500/1700/1800/1900, 2100/2300, 2500/2600MHz frequency band	Filter out medium/high frequency band RF interference

The stable power supply can ensure the normal operation of L850 module; and the ripple of the power supply should be less than 300mV in design. When the module operates with the maximum emission power, the maximum operating current can reach 1.5A, so the power source should be not lower than 3.135V, or the module may shut down or reboot. The power supply limits are shown in Figure 3-3:

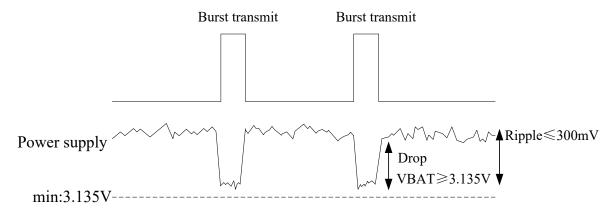


Figure 3-3 Power supply limit

3.2.2 Logic Level

The L850 module 1.8V logic level definition is shown in the following table:

Parameter	Minimum	Typical	Maximum	Unit
1.8V logic level	1.71	1.8	1.89	V
Ин	1.3	1.8	1.89	V
VIL	-0.3	0	0.3	V

The L850 module 3.3V logic level definition is shown in the following table:

Parameter	Minimum	Typical	Maximum	Unit
3.3V logic level	3.135	3.3	3.465	V
Ин	2.3	3.3	3.465	V
VIL	-0.3	0	0.3	V

3.2.3 Power Consumption

In the condition of 3.3V power supply, the L850 power consumption is shown in the following table:

Parameter	Mode	Condition	Average Current (mA)
l _{off}	Power off	Power supply, module power off	0.05
		DRX=6	3.4
	DRX LTE FDD Pagi	DRX=8	2.8
I _{Sleep}		DRX=9	2.4
		Paging cycle #128 frames (1.28s DRx cycle)	3.5
		Paging cycle #128 frames (1.28s DRx cycle)	3.8

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All Rights Reserved.

Parameter	Mode	Condition	Average Current (mA)
	Radio Off	AT+CFUN=4, Flight mode	1.8
		WCDMA Data call Band 1 @+23.5dBm	580
		WCDMA Data call Band 2 @+23.5dBm	650
Iwcdma-rms	WCDMA	WCDMA Data call Band 4 @+23.5dBm	550
		WCDMA Data call Band 5 @+23.5dBm	500
		WCDMA Data call Band 8 @+23.5dBm	520
		LTE FDD Data call Band 1 @+23dBm	700
		LTE FDD Data call Band 2 @+23dBm	770
		LTE FDD Data call Band 3 @+23dBm	740
		LTE FDD Data call Band 4 @+23dBm	760
	LTE FDD	LTE FDD Data call Band 5 @+23dBm	560
		LTE FDD Data call Band 7 @+23dBm	880
		LTE FDD Data call Band 8 @+23dBm	570
		LTE FDD Data call Band 11 @+23dBm	840
		LTE FDD Data call Band 12 @+23dBm	640
		LTE FDD Data call Band 13 @+23dBm	660
ILTE-RMS		LTE FDD Data call Band 17 @+23dBm	650
		LTE FDD Data call Band 18 @+23dBm	600
		LTE FDD Data call Band 19 @+23dBm	550
		LTE FDD Data call Band 20 @+23dBm	620
		LTE FDD Data call Band 21 @+23dBm	870
		LTE FDD Data call Band 26 @+23dBm	570
		LTE FDD Data call Band 28 @+23dBm	580
		LTE FDD Data call Band 30 @+23dBm	800
		LTE FDD Data call Band 66 @+23dBm	700
	LTE TDD	LTE TDD Data call Band 38 @+23dBm	430

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All Rights Reserved.

Parameter	Mode	Condition	Average Current (mA)
		LTE TDD Data call Band 39 @+23dBm	340
		LTE TDD Data call Band 40 @+23dBm	380
		LTE TDD Data call Band 41 @+23dBm	430

In 3CA mode, the L850 power consumption is shown in the following table:

3CA Combination	Condition	Average
	(Maximum Data Transfer)	Current (mA)
	Band 1 @+22dBm	720
	Band 2 @+22dBm	820
	Band 3 @+22dBm	870
1+3+7, 1+3+8, 1+3+19, 1+3+20,	Band 4 @+22dBm	820
1+3+28, 1+7+20, 1+7+28, 1+8+11,	Band 5 @+22dBm	750
1+19+21	Band 7 @+22dBm	1060
2+4+5, 2+4+13, 2+5+30, 2+12+30, 2+29+30	Band 8 @+22dBm	650
3+7+20, 3+7+28	Band 11 @+22dBm	1040
4+5+30, 4+12+30, 4+29+30		
5+66+2, 13+66+2	Band 12 @+22dBm	760
2+2+5, 2+2+13, 2+2+29	Band 13 @+22dBm	760
3+3+7, 3+7+7, 3+3+20	Band 19 @+22dBm	750
4+4+5, 4+4+13	Band 20 @+22dBm	720
5+66+66, 13+66+66, 66+66+2,	Band 21 @+22dBm	950
66+66+66	Band 28 @+22dBm	670
7+7+28, 3+3+28, 3+3+5, 1+3+3 40+40+40, 41+41+41	Band 30 @+22dBm	1160
	Band 40 @+22dBm	460
	Band 41 @+22dBm	520
	Band 66 @+22dBm	740

Note:

The data above is an average value tested on some samples at 25°C temperature.

Fibccon 3.3 Control Signal

The L850 module provides two control signals for power on/off and reset operations. The pin is defined in the following table:

Pin	Pin Name	I/O	Reset Value	Functions	Туре
6	FULL CARD POWER OFF#	1	PU	Module power on/off input, internal pull up	3.3/1.8V
				Power on: High/Floating Power off: Low	
67	RESET#	I	-	WWAN reset input, internal pull up(10KΩ), active low	1.8V
50	PERST#	I	PU	Asserted to reset module PCIe interface default. If module went into core dump, it will reset whole module, not only PCIe interface. Active low, internal pull up(10KΩ)	3.3V

Note:

RESET# and PERST# need to be controlled by independent GPIO, and not shared with other devices on the host. RESET# and PERST# are sensitive signals, so they should keep away from RF interference and be protected by GND. It should be neither near PCB edge nor route on surface layer to avoid module abnormal reset caused by ESD.

3.3.1 Module Start-Up

3.3.1.1 Start-up Circuit

The FCPO# (FULL_CARD_POWER_OFF#) pin needs an external 3.3V or 1.8V pull up for booting up. AP (Application Processor) controls module start-up. The recommended design is using a default PD port to control FCPO#. It also should reserve a 100K pull down resistor on AP side. The reference design is shown in Figure3-4:

DOCON

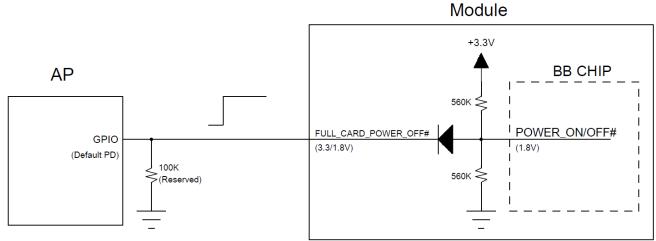


Figure 3-4 Circuit for module start-up controlled by AP

3.3.1.2 Start-up Timing Sequence

When power supply is ready, the PMU of module will power on and start initialization process by pulling high FCPO# signal. After about 10s, module will complete initialization process. The start-up timing is shown in Figure 3-5:

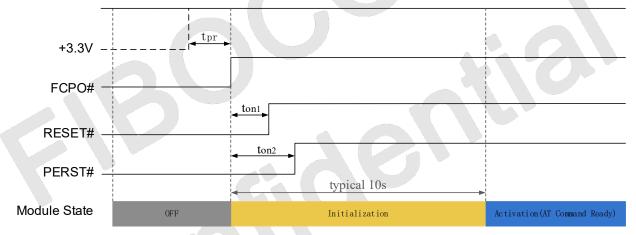


Figure 3-5 Timing control for start-up

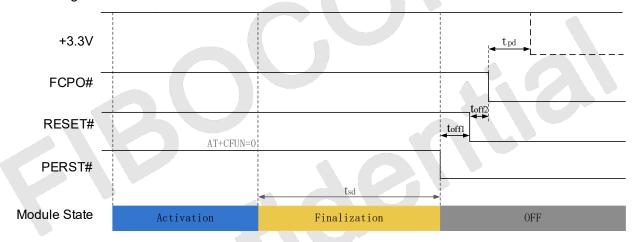
Index	Min.	Recommended	Max.	Comments
t _{pr}	0ms		-	The delay time of power supply rising from 0V up to 3.135V. If power supply always ready, it can be ignored
t _{on1}	8ms	ns 20ms		RESET# should be de-asserted after FCPO#
t _{on2}	50ms	100ms	-	The time delay of PERST# de-asserted after FCPO#, PERST# must always be the last to get de-asserted

The minimum detection time of PCIe link is about 45ms after PERST# de-asserted.

Note:

When USB is used as data transfer interface, follow timing above in PERST# connecting with host, otherwise don't control PERST# in PERST# floating condition.

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All Rights Reserved.



3.3.2 Module Shutdown

The module can be shut down by the following controls:

Shutdown Control	Action	Condition
Software	Sending AT+CFUN=0 command	Normal shutdown(recommend)
Hardware	Pull down FCPO# pin	Only used when a hardware exception occurs and the software control cannot be used.

The module can be shut down by sending AT+CFUN=0 command. When the module receives the software shutdown command, the module will start the finalization process (the reverse process of initialization), and it will be completed after t_{sd} time (t_{sd} is the time which AP receive OK of "AT+CFUN=0", if there is no response, the max t_{sd} is 5s). In the finalization process, the module will save the network, SIM card and some other parameters from memory, and then clear the memory and shut down PMU. The control timing is shown in Figure 3-6:

Figure 3-6 Shutdown timing control

Index	Min.	Recommended	Max.	Comments
t _{off1}	16ms	20ms	-	RESET# should be asserted after PERST#
t _{off2}	2ms	10ms	-	FCPO# should be asserted after RESET#
t _{pd}	10ms	100ms	-	+3.3V power supply goes down time. If power supply is always on, it can be ignored

Note:

When USB is used as data transfer interface, follow timing above in PERST# connecting with host, otherwise don't control PERST# in PERST# floating condition.

3.3.3 Module Reset

The L850 module can reset to its initial status by pulling down the RESET# signal for more than 2ms (10ms is recommended), and module will restart after RESET# signal is released. When customer executes RESET# function, the PMU remains its power inside the module. The recommended circuit design is shown in the Figure 3-7:

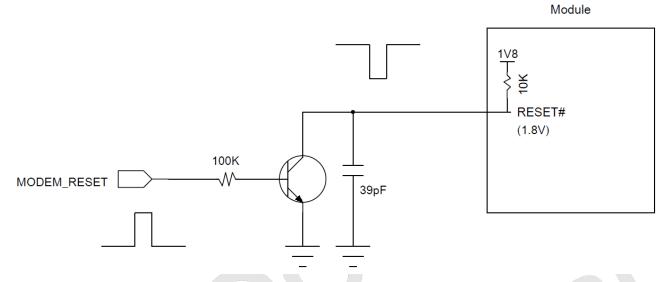
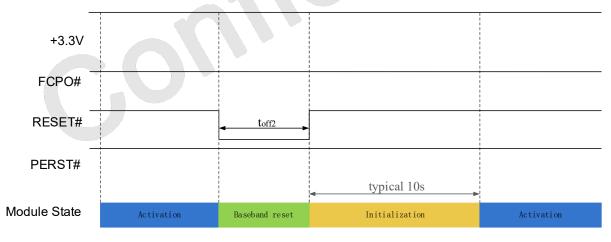



Figure 3-7 Recommended design for reset circuit

There are two reset control timings as below:

- Reset timing 1st in Figure 3-8, PMU of module internal always on in reset sequence, recommend using in FW upgrade and module recovery;
- Reset timing 2nd in Figure 3-9, PMU of module internal will be off in reset sequence (including whole power off and power on sequence, t_{sd} can refer <u>section 3.3.2</u>), recommend using in system warm boot.

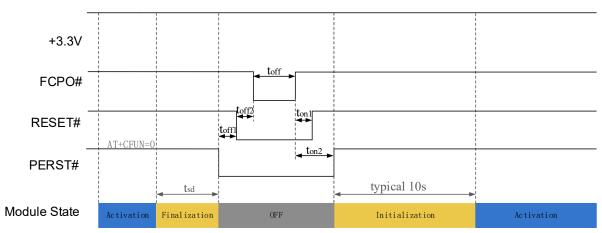


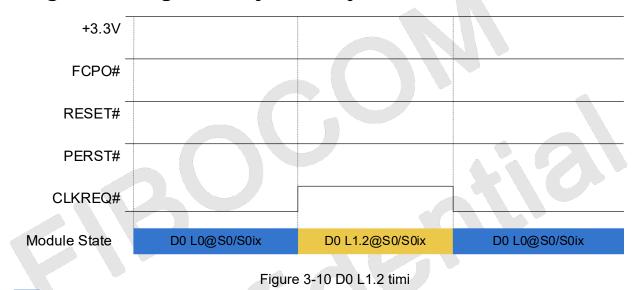
Figure 3-9 Reset timing 2nd

Index	Min.	Recommended	Max.	Comments		
t _{off1}	16ms	20ms	-	RESET# should be asserted after PERST#, refer section 3.3.2		
t _{off2}	2ms	10ms	-	FCPO# should be asserted after RESET#, refer section 3.3.2		
t _{off}	500ms	500ms	00ms - Time to allow the WWAN module to fully discharge and residual voltages before the pin could be de-asserted again. This is required for both Pre-OS as well as Run flow			
t _{on1}	8ms	20ms _		RESET# should be de-asserted after FCPO#, refer section 3.3.1.2		
t _{on2}	50ms	100ms		The time delay of PERST# de-asserted after FCPO#, PERST# must always be the last to get de-asserted. refer <u>section 3.3.1.2</u>		

Note:

When USB is used as data transfer interface, follow timing above in PERST# connecting with host, otherwise don't control PERST# in PERST# floating condition.

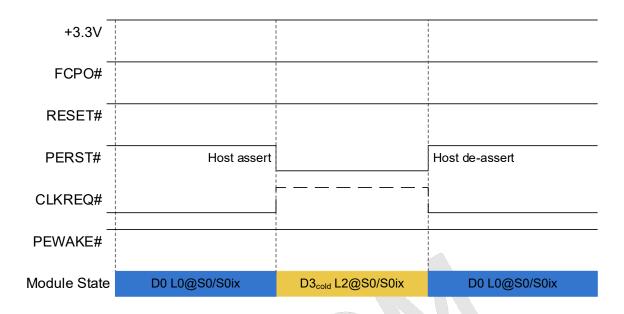
3.3.4 PCIe Link State


Modem has the lowest power consumption in D0 L1.2 PCIe link state. $D3_{cold}$ L2 will increase extra about 0.5mA power consumption. CLKREQ# can assert or de-assert in $D3_{cold}$ L2, but CLKREQ# shouldn't be changed again during $D3_{cold}$ L2. When CLKREQ# asserts in $D3_{cold}$ L2, it will increase extra 0.3mA power consumption compared with CLKREQ# de-asserted in $D3_{cold}$ L2. We recommend keep CLKREQ# de-asserted in $D3_{cold}$ L2.

PCle Link State	PERST#	CLKREQ#	Power Consumption (mA)	Description
D0 L1.2	н	н	Isleep	Refer 3.2.3 Power Consumption
	L	н	I _{sleep} +0.5	The extra 0.5mA is consumed on PERST# pull down
D3 _{cold} L2	L	L	I _{sleep} +0.8	The extra 0.3mA is consumed on CLKREQ# pull down

3.3.4.1 D0 L1.2

Module supports PCIe goes into D0 L1.2 state in Win10 system. The D0 L0@S0/S0ix \rightarrow


D0 L1.2@S0/S0ix \rightarrow D0 L0@S0/S0ix timing is shown in figure 3-10:

Note:

When USB is used as data transfer interface in Chrome/Android/Linux OS, there is no PCIe link state. But when USB goes into suspend it also needs to follow the timing above (If PERST# and CLKREQ# are floating, don't control PERST# and CLKREQ#).

3.3.4.2 D3cold L2

Module supports PCIe goes into $D3_{cold} L2$ state in Win10 system. In $D3_{cold} L2$ state, PCIe link can be woken up by both modem and host. The D0 L0@S0/S0ix \rightarrow D3_{cold} L2@S0/S0ix \rightarrow D0 L0@S0/S0ix timing is shown in Figure 3-11 and Figure 3-12:

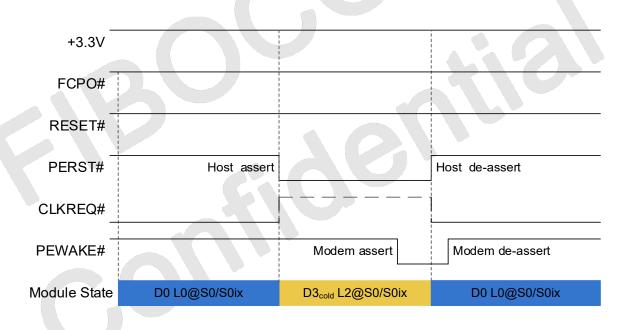


Figure 3-12 D3cold L2 timing (Modem wakeup)

Note:

When USB is used as data transfer interface in Chrome/Android/Linux OS, there is no PCIe link state, so don't need to follow timing above.

3.3.5 Timing Application

The recommended timing application in Win10 OS is as below table:

System status		Timing Application
S0ix	D0 L1.2	Refer to section 3.3.4.1 Figure 3-10 D0 L1.2 Timing
(Modem standby)	D3 _{cold} L2	Refer to section <u>3.3.4.2</u> Figure 3-11/3-12 D3 _{cold} L2 timing
S3, S4, S5	Power on (back to S0)	Refer to section <u>3.3.1.2</u> Figure 3-5 Timing control for start-up
33, 34, 33	Power off (out of S0)	Refer to section <u>3.3.2</u> Figure 3-6 Software power off timing
G3 boot	Power on	Refer to section <u>3.3.1.2</u> Figure 3-5 Timing control for start-up
Warm boot		Refer to section <u>3.3.3</u> Figure 3-9 Reset timing 2 nd
Modem FW upgrade / Modem recovery		Refer to section <u>3.3.3</u> Figure 3-8 Reset timing 1 st

Intel X86 platforms must follow the table above. AMD X86 platforms should follow the table above and meet the special request of platform itself.

The recommended timing application in Chrome/Android/Linux OS is as below table:

System status	Timing Application
Power on	Refer to section <u>3.3.1.2</u> Figure 3-5 Timing control for start-up
Shut down	Refer to section <u>3.3.2</u> Figure 3-6 Software power off timing
Connect standby	Refer to section 3.3.4.1 Figure 3-10 D0 L1.2 Timing
Restart	Refer to section 3.3.3 Figure 3-9 Reset timing 2 nd
Modem FW upgrade / Modem recovery	Refer to section <u>3.3.3</u> Figure 3-8 Reset timing 1 st

3.4 IPC Interface

L850 module supports PCIe and USB interface for data request. PCIe & USB interface functions are as below table:

Interface	System	Priority	Description
PCle	Win10	High	Priority: PCIe>USB If PCIe and USB ports both connected with PC, module will initial PCIe first, then disable USB port
USB	Chrome OS /Android/Linux	Low	It must disconnect PCIe port, only keep USB connecting. If keep PCIe and USB connecting both, it needs disable PCIe by BIOS/UEFI of PC

3.4.1 PCIe Interface

L850 module supports PCIe Gen1 interface and one data transmission channel. BIOS configuration must follow X86 platform BKC (Best Know Configuration) reference design.

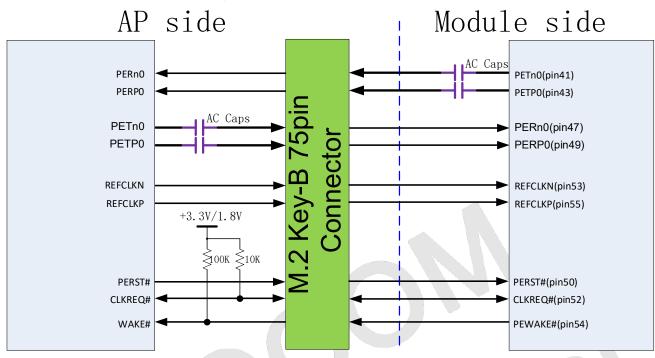
PCIe interface is initialized with host driver, and then mapped MBIM & GNSS port in Win10 OS. The MBIM interface is used for data transfer and GNSS port is used for receiving GNSS data.

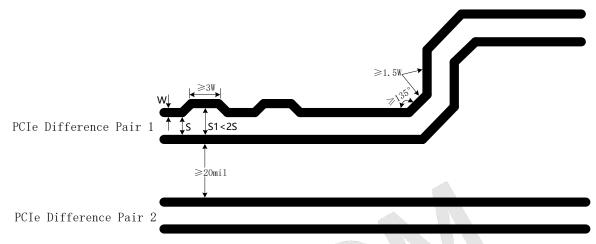
Pin#	Pin Name	I/O	Reset Value	Description	Туре
41	PETn0	0	-	PCIe TX differential signal	-
				Negative	
43	PETP0	0	_	PCIe TX differential signal	_
				Positive	
47	PERn0		_	PCIe RX differential signal	_
1		1		Negative	
49	PERP0			PCIe RX differential signal	
49		1		Positive	
53	REFCLKN			PCIe reference clock signal	
55	INEI CERIN			Negative	
55	REFCLKP	\sum		PCle reference clock signal	
55	NEI CERF		-	Positive	-
				Asserted to reset module PCIe interface	
50	PERST#	I	PU	default. If module went into coredump, it will reset whole module, not only PCIe interface.	3.3V
				Active low, internal pull up($10K\Omega$)	
				Asserted by device to request a PCIe	
				reference clock be available (active clock	
52	CLKREQ#	I/O	PU	state) in order to transmit data. It also used by	3.3V
				L1 PM Sub states mechanism, asserted by either host or device to initiate an L1 exit.	
				Active low, internal pull up($10K\Omega$) Asserted to wake up system and reactivate	
				PCIe link from L2 to L0, it depends on system	
54	PEWAKE#	0	L	whether supports wake up functionality.	3.3V
				Active low, open drain output and should add	
				external pull up (100KΩ) on platform	

3.4.1.1 PCIe Interface Definition

3.4.1.2 PCIe Interface Application

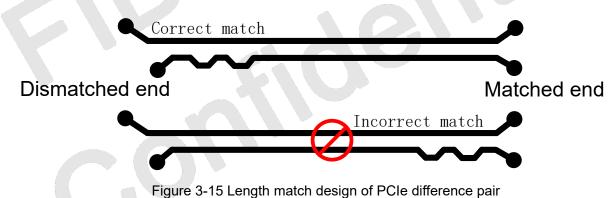
The reference circuit is shown in Figure 3-13:




Figure 3-13 Reference circuit for PCIe interface

L850 module supports PCIe Gen1 interface, one lane. The PCIe interface including three differential pairs: transmit pair TXP/N, receiving pair RXP/N and clock pair CLKP/N.

PCIe can achieve the maximum transmission rate of 2.5 GT/s, and must strictly follow the rules below in PCB Layout:


- The differential signal pair lines should be parallel and equal in length;
- The differential signal pair lines should be short if possible and be controlled within 15 inch (380 mm) for AP end;
- The impedance of differential signal pair lines is recommended to be 100Ω, and can be controlled to 80~120Ω in accordance with PCIe protocol;
- Try to avoid the discontinuous reference ground, such as segment and space;
- When the differential signal lines go through different layers, the via hole of grounding signal should be in close to that of signal, and generally, each pair of signals require 1-3 grounding signal via holes and the lines should never cross the segment of plane;
- Try to avoid bended lines and avoid introducing common-mode noise in the system, which will influence the signal integrity and EMI of difference pair. As shown in Figure 3-14, the bending angle of all lines should be equal or greater than 135°, the spacing between difference pair lines should be larger than 20mil, and the line caused by bending should be greater than 1.5 times line width at least. When a serpentine line is used for length match with another line, the bended length of each segment

should be at least 3 times the line width (\geq 3W). The largest spacing between the bended part of the serpentine line and another one of the differential lines must be less than 2 times the spacing of normal differential lines (S1 < 2S);

The difference in length of two data lines in difference pair should be within 5mil, and the length match is required for all parts. When the length match is conducted for the differential lines, the designed position of correct match should be close to that of incorrect match, as shown in Figure 3-15. However, there is no specific requirements for the length match of transmit pair and receiving pair, which means the length match is only required by intra differential pair rather than inter differential pair.

rigure 5-15 Eengin materracisign of 1 ofe unit

3.4.2 USB Interface

The L850 module supports USB2.0 which is compatible with USB High-Speed (480 Mbps) and USB Full-Speed (12 Mbps). It supports USB3.1 Gen1 using for LTE cat9 high speed data throughput at the same time. For the USB timing and electrical specification of L850 module, please refer to "Universal Serial Bus Specification 2.0" and "Universal Serial Bus Specification 3.0".

USB interface initialized with host driver, and then mapped NCM and ACM ports in Chrome/Linux/Android OS. The NCM ports are used for data transfer. The ACM port is used for AT command. The port can be

configured in practical application.

3.4.2.1 USB Interface Definition

Pin#	Pin Name	I/O	Description	Туре
7	USB D+	I/O	USB data plus	0.33V,
/	036_0+		USB data plus	USB2.0
9		I/O	USB data minus	0.33V,
9	USB_D-			USB2.0
29	USB3.0_TX-	0	USB3.0 transmit data minus	-
31	USB3.0_TX+	0	USB3.0 transmit data plus	-
35	USB3.0_RX-	I	USB3.0 receive data minus	-
37	USB3.0_RX+	I	USB3.0 receive data plus	-

3.4.2.2 USB2.0 Interface Application

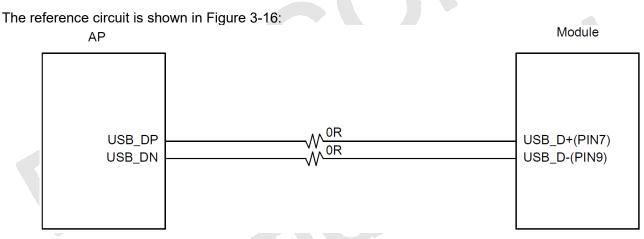


Figure 3-16 Reference circuit for USB 2.0 interface

USB_D- and USB_D+ are high speed differential signal lines with the maximum transfer rate of 480 Mbps, so the following rules should be followed carefully in the case of PCB layout:

- USB_D- and USB_D+ signal lines should have the differential impedance of 90Ω.
- USB_D- and USB_D+ signal lines should be parallel and have the equal length. The right angle routing should be avoided.
- USB_D- and USB_D+ signal lines should be routed on the layer that is adjacent to the ground layer, and wrapped with GND vertically and horizontally.

3.4.2.3 USB3.0 Interface Application

The reference circuit is shown in Figure 3-17:

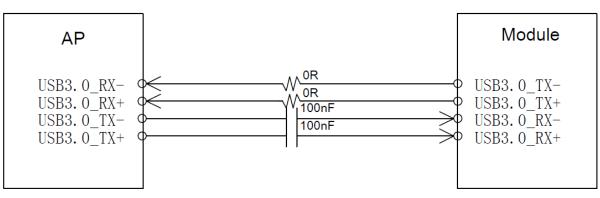


Figure 3-17 Reference circuit for USB3.0 interface

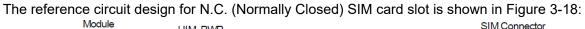
USB3.0 signals are super speed differential signal lines with the maximum transfer rate of 5 Gbps. So the following rules should be followed carefully in the case of PCB layout:

- USB3.0_TX-/USB3.0_TX+ and USB3.0_RX-/ USB3.0_RX+ are two pairs differential signal lines. The differential impedance should be controlled as 90Ω.
- The two pairs differential signal lines should be parallel and have the equal length. The right angle routing should be avoided.
- The two pairs differential signal lines should be routed on the layer that is adjacent to the ground layer, and wrapped with GND vertically and horizontally.

3.5 USIM Interface

The L850 module has a built-in USIM card interface, which supports 1.8V and 3V SIM cards.

3.5.1 USIM Pins


The USIM pins description is shown in the following table:

Pin	Pin Name	I/O	Reset Value	Description	Туре
36	UIM_PWR	РО	-	USIM power supply	1.8V/3V
30	UIM_RESET	0	L	USIM reset	1.8V/3V
32	UIM_CLK	0	L	USIM clock	1.8V/3V
34	UIM_DATA	I/O	L	USIM data, internal pull up(4.7K Ω)	1.8V/3V
66	SIM_DETECT	I	PD	USIM card detect, internal 390K pull- up. Active high, and high level indicates SIM card is inserted; and low level indicates SIM card is detached.	1.8V

3.5.2 USIM Interface Circuit

3.5.2.1 N.C. SIM Card Slot

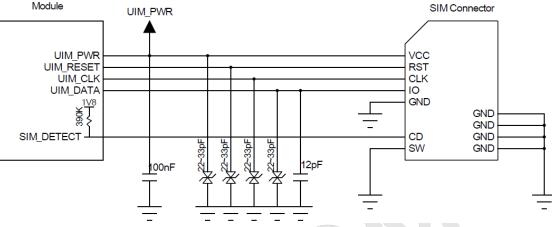


Figure 3-18 Reference circuit for N.C. SIM card slot

The principles of the N.C.SIM card slot are described as follows:

- When the SIM card is detached, it connects the short circuit between CD and SW pins, and drives the SIM_DETECT pin low.
- When the SIM card is inserted, it connects an open circuit between CD and SW pins, and drives the SIM_DETECT pin high.

3.5.2.2 N.O. SIM Card Slot

The reference circuit design for N.O. (Normally Open) SIM card slot is shown in Figure 3-19:

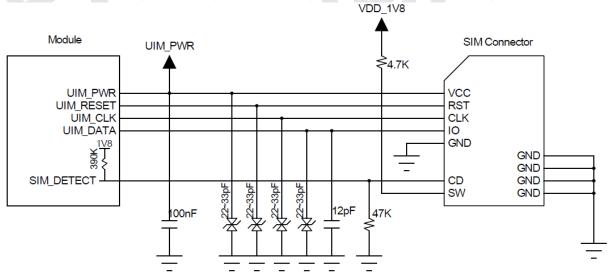


Figure 3-19 Reference circuit for N.O. SIM card slot

The principles of the N.O.SIM card slot are described as follows:

 When the SIM card is detached, it connects an open circuit between CD and SW pins, and drives the SIM DETECT pin low.

 When the SIM card is inserted, it connects the short circuit between CD and SW pins, and drives the SIM_DETECT pin high.

3.5.3 USIM Hot-Plug

The L850 module supports the SIM card hot-plug function, which determines whether the SIM card is inserted or detached by detecting the SIM_DETECT pin state of the SIM card slot.

The SIM card hot-plug function can be configured by "AT+MSMPD" command, and the description for AT command is shown in the following table:

AT Command	Hot-plug Detection	Function Description		
AT+MSMPD=1	Enable	Default value, the SIM card hot-plug detection function is enabled. The module can detect whether the SIM card is inserted or not through the SIM_DETECT pin state.		
AT+MSMPD=0	Disable	The SIM card hot-plug detect function is disabled. The module reads the SIM card when starting up, and the SIM_DETECT status will not be detected.		

After the SIM card hot-plug detection function is enabled, the module detects that the SIM card is inserted when the SIM_DETECT pin is high, then executes the initialization program and finish the network registration after reading the SIM card information. When the SIM_DETECT pin is low, the module determines that the SIM card is detached and does not read the SIM card.

Note:

SIM_DETECT is active high. It can be swapped to active low by AT CMD.

3.5.4 USIM Design

The SIM card circuit design should meet the EMC standards and ESD requirements with the improved capability to resist interference, to ensure that the SIM card can work stably. The following guidelines should be noted in design:

- The SIM card slot should be placed as close as possible to the module, and away from the RF antenna, DC/DC power supply, clock signal lines, and other strong interference sources.
- The SIM card slot with a metal shielding housing can improve the anti-interference ability.
- The trace length between the SIM card slot and the module should not exceed 100mm, or it could reduce the signal quality.
- The UIM_CLK and UIM_DATA signal lines should be isolated by GND to avoid crosstalk interference. If it is difficult for the layout, the whole SIM signal lines should be wrapped with GND as a group at

least.

The filter capacitors and ESD devices for SIM card signals should be placed near to the SIM card slot, and the ESD devices with 22~33pF capacitance should be used.

3.6 Status Indicator

The L850 module provides three signals to indicate the operating status of the module, and the status indicator pins is shown in the following table:

Pin	Pin Name	I/O	Reset Value	Pin Description	Туре
10	LED1#	0	PD	System status LED, drain output.	3.3V
23	WOWWAN#	0	PD	Module wakes up Host (AP), Reserved	1.8V
48	TX_BLANKING	0	PD	PA blanking output, external GPS control signal, Reserved	1.8V

3.6.1 LED#1 Signal

The LED#1 signal is used to indicate the operating status of the module, and the detailed description is shown in the following table:

Module Status	LED1# Signal
RF function ON	Low level (LED On)
RF function OFF	High level (LED Off)

The LED driving circuit is shown in Figure 3-20:

Figure 3-20 LED driving circuit

A

Note:

The resistance of LED current-limiting resistor is selected according to the driving voltage and the driving current.

Fibccon 3.7 Interrupt Control

Pin	Pin Name	I/O	Reset Value	Pin Description	Туре
8	W_DISABLE1#	I	PD	Enable/Disable RF network	3.3/1.8V
25	DPR	I	PU	BodySAR detection	3.3/1.8V
26	W_DISABLE2#	I	PU	GNSS disable signal, Reserved	3.3/1.8V

The L850 module provides three interrupt signals, and the pin definition is as follows:

3.7.1 W_DISABLE1#

The module provides a hardware pin to enable/disable WWAN RF function, and the function can also be controlled by the AT command. The module enters into flight mode after the RF function is disabled. The definition of W_DISABLE1# signal is as follows:

W_DISABLE1# signal	Function	
High/Floating	WWAN function is enabled, the module exits the flight mode.	
Low	WWAN function is disabled, the module enters into flight mode.	

Note:

The function of W_DISABLE1# is enabled by default. It can be disabled by customer's request.

3.7.2 BODYSAR

The L850 module supports BodySAR function by detecting the DPR pin. The voltage level of DPR is high by default, and when the SAR sensor detects the closing human body, the DPR signal will be pulled down. As the result, the module then lowers down its emission power to its default threshold value, thus reducing the RF radiation on the human body. The threshold of emission power can be set by the AT Commands. The definition of DPR signal is shown in the following table:

DPR signal	Function
High/Floating	The module keeps the default emission power
Low	Lower the maximum emission power to the threshold value of the module.

3.8 Clock Interface

The L850 module supports a clock interface. It can output 26MHz clock.

Pin	Pin Name	I/O	Reset Value	Pin Description	Туре
46	SYSCLK	0		26M clock output used for external audio	1.8V
40	OTOCER	0	-	codec and GNSS, etc., default disabled	1.00

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All Rights Reserved.

FIDCCON 3.9 ANT Tunable Interface

The module supports ANT Tunable interfaces with two different control modes, i.e. MIPI interface and 3bit GPO interface. Through cooperating with external antenna adapter switch via ANT Tunable, it can flexibly configure the bands of LTE antenna to improve the antenna's working efficiency and save space for the antenna.

Pin	Pin Name	I/O	Pin Description	Туре
56	RFFE_SCLK	0	Tunable ANT control, MIPI Interface, RFFE clock	1.8V
58	RFFE_SDATA	0	Tunable ANT control, MIPI Interface, RFFE data	1.8V
59	ANTCTL0	0	Tunable ANT control, GPO interface, bit0	1.8V
61	ANTCTL1	0	Tunable ANT control, GPO interface, bit1	1.8V
63	ANTCTL2	0	Tunable ANT control, GPO interface, bit2	1.8V

The MIPI signal is limited to unidirectional function only.

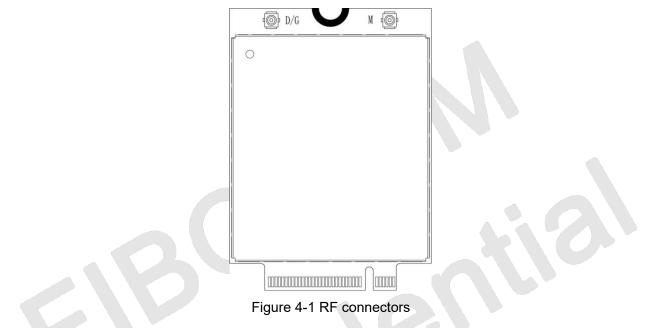
3.10 Configuration Interface

The L850 module provides four pins to define WWAN-PCIe, USB3.1 type M.2 module:

Pin	Pin Name	I/O	Reset Value	Pin Description	Туре
1	CONFIG_3	0	-	NC	-
21	CONFIG_0	0	L	Internally connected to GND	-
69	CONFIG_1	0	L	Internally connected to GND	-
75	CONFIG_2	0	L	Internally connected to GND	-

The M.2 module configuration is shown in the following table:

Config_0	Config_1	Config_2	Config_3	Module Type and Main	Port
(pin21)	(pin69)	(pin75)	(pin1)	Host Interface	Configuration
GND	GND	GND	NC	WWAN–USB3.1 Gen1, PCle Gen1	0


Please refer to "PCI Express M.2 Specification Rev1.2" for more details.

4 Radio Frequency

4.1 RF Interface

4.1.1 RF Interface Functionality

The L850 module supports two RF connectors used for external antenna connection. As the Figure 4-1 shows, "M" is for Main antenna, which is used to receive and transmit RF signal; "D/G" is for Diversity antenna, which is used to receive the diversity RF and GNSS signals.

4.1.2 **RF Connector Characteristic**

Rated Condition		Environment Condition
Frequency Range	DC~6GHz	Temperature Danges 40°C 195°C
Characteristic Impedance	50Ω	Temperature Range: –40°C~+85°C

4.1.3 **RF Connector Dimension**

L850 module uses standard M.2 RF connectors. The RF connector part number is 818004607 manufactured by ECT Corporation, and the size is 2×2×0.6mm. The connector dimension is shown as following picture:

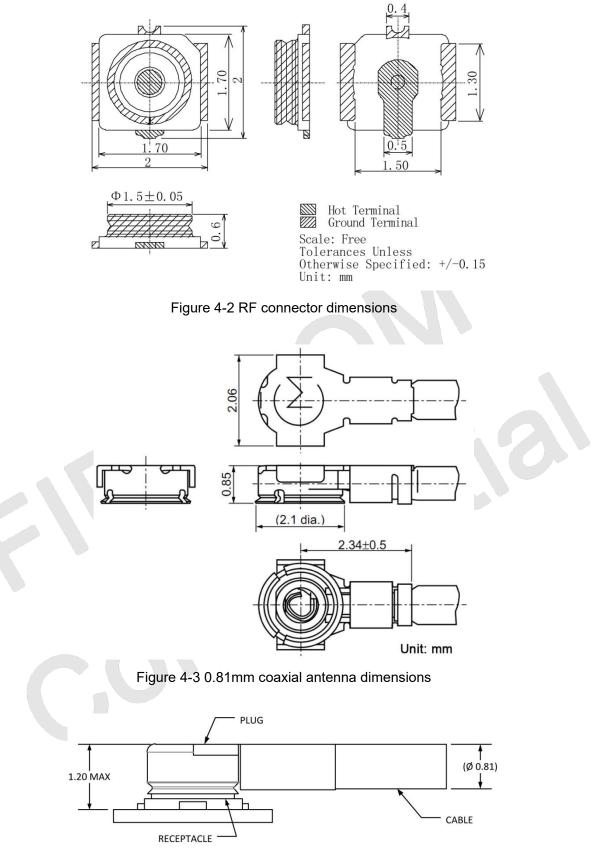
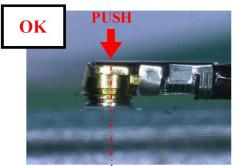



Figure 4-4 Schematic diagram of 0.81mm coaxial antenna connected to the RF connector

4.1.4 **RF Connector Assembly**

Mate RF connector parallel refer Figure 4-5, do not slant mate with strong force.

Correct connector mating Parallel **<OK>**

Wrong connector mating Not parallel **<NG>**

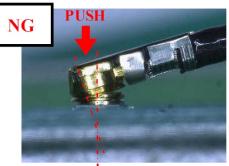


Figure 4-5 Mate RF connector

To avoid damage in RF connector unmating, it is recommended using pulling JIG as Figure 4-6, and the pulling JIG must be lifted up vertically to PCB surface (see Figure 4-7 and 4-8).

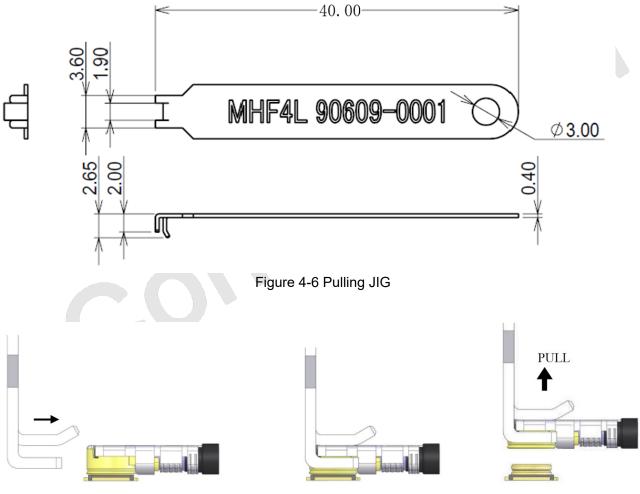
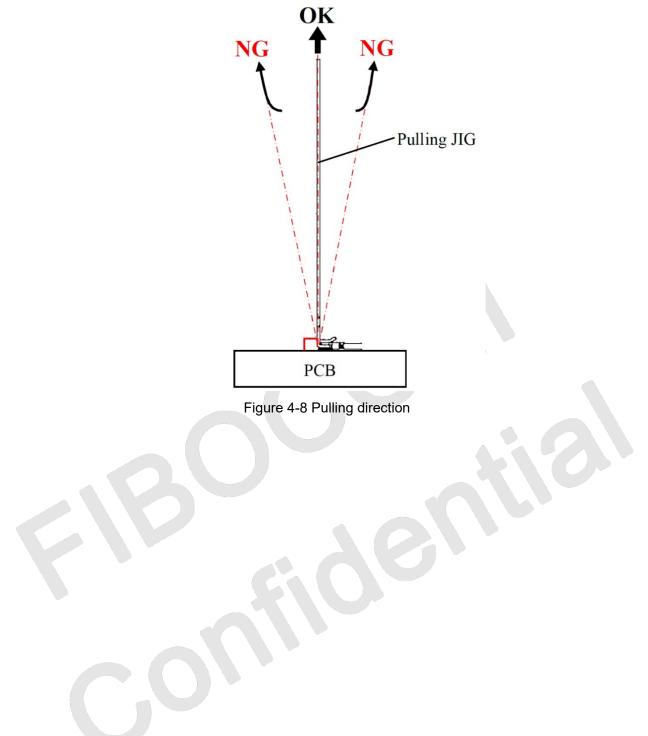



Figure 4-7 Lift up pulling JIG

4.2 Operating Band

The operating bands of L850 module are shown in the following table:

Operating Band	Description	Mode	Tx (MHz)	Rx (MHz)
Band 1	2100MHz	LTE FDD/WCDMA	1920 - 1980	2110 - 2170
Band 2	1900MHz	LTE FDD/WCDMA 1850 - 1910 1		1930 - 1990
Band 3	1800MHz	LTE FDD	1710 - 1785	1805 - 1880
Band 4	1700MHz	LTE FDD/WCDMA	1710 - 1755	2110 - 2155
Band 5	850MHz	LTE FDD/WCDMA	824 - 849	869 - 894
Band 7	2600Mhz	LTE FDD	2500 - 2570	2620 - 2690
Band 8	900MHz	LTE FDD/WCDMA	880 - 915	925 - 960
Band 11	1500MHz	LTE FDD	1427.9 - 1447.9	1475.9 - 1495.9
Band 12	700MHz	LTE FDD	699 - 716	729 - 746
Band 13	700MHz	LTE FDD	777 - 787	746 - 756
Band 17	700MHz	LTE FDD	704 - 716	734 - 746
Band 18	800MHz	LTE FDD	815 - 830	860 - 875
Band 19	800MHz	LTE FDD	830 - 845	875 - 890
Band 20	800MHz	LTE FDD	832 - 862	791 - 821
Band 21	1500MHz	LTE FDD	1447.9 - 1462.9	1495.9 - 1510.9
Band 26	850MHz	LTE FDD	814 - 849	859 - 894
Band 28	700MHz	LTE FDD 703 - 748 758 - 8		758 - 803
Band 29	700MHz	LTE FDD	N/A 716 - 728	
Band 30	2300MHz	LTE FDD	2305 - 2315	2350 - 2360
Band 66	1700MHz	LTE FDD	1710 - 1780	2110 - 2200
Band 38	2600MHz	LTE TDD	2570 - 2620	
Band 39	1900MHZ	LTE TDD	1880 - 1920	
Band 40	2300MHz	LTE TDD	2300 - 2400	
Band 41	2500MHZ	LTE TDD	2496 - 2690	
GPS L1	-	1575.42:		1575.42±1.023
GLONASS L1	-	-	-	1602.5625±4
BDS	-	-	-	1561.098±2.046

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All Rights Reserved.

Fibccon 4.3 Transmitting Power

Mode	Band	3GPP Requirement (dBm)	Tx Power (dBm)	Note
	Band 1	24+1.7/-3.7	23.5±1	-
	Band 2	24+1.7/-3.7	23.5±1	-
WCDMA	Band 4	24+1.7/-3.7	23.5±1	-
	Band 5	24+1.7/-3.7	23.5±1	-
	Band 8	24+1.7/-3.7	23.5±1	-
	Band 1	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 2	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 3	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 4	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 5	23±2.7	23+2/-1	10MHz Bandwidth, 1 RB
	Band 7	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 8	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 11	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 12	23±2.7	23±1	10MHz Bandwidth, 1 RB
LTE FDD	Band 13	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 17	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 18	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 19	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 20	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 21	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 26	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 28	23+2.7/-3.2	23±1	10MHz Bandwidth, 1 RB
	Band 30	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 66	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 38	23±2.7	23±1	10MHz Bandwidth, 1 RB
LTE TDD	Band 39	23±2.7	23±1	10MHz Bandwidth, 1 RB

The transmitting power for each band of L850 module is shown in the following table:

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All Rights Reserved.

F	ibco	ION			
	Mode	Band	3GPP Requirement (dBm)	Tx Power (dBm)	Note
		Band 40	23±2.7	23±1	10MHz Bandwidth, 1 RB
		Band 41	23±2.7	23±1	10MHz Bandwidth, 1 RB

Note:

Band 30 TX power range of L850-GL-03 serial module is between 22±1dBm, not 23±1dBm.

4.4 Receiver Sensitivity

The receiver sensitivity for each band of the L850 module is shown in the following table:

Mode	Band	3GPP Requirement (dBm)	Rx Sensitivity (dBm) Typical	Note
	Band 1	-106.7	-109.5	BER < 0.1%
	Band 2	-104.7	-110	BER < 0.1%
WCDMA	Band 4	-106.7	-109.5	BER < 0.1%
	Band 5	-104.7	-111	BER < 0.1%
	Band 8	-103.7	-110	BER < 0.1%
	Band 1	-96.3	-101.5	10MHz Bandwidth
	Band 2	-94.3	-101.5	10MHz Bandwidth
	Band 3	-93.3	-101.5	10MHz Bandwidth
	Band 4	-96.3	-101.5	10MHz Bandwidth
	Band 5	-94.3	-102.5	10MHz Bandwidth
	Band 7	-94.3	-101	10MHz Bandwidth
	Band 8	-93.3	-102.5	10MHz Bandwidth
LTE FDD	Band 11	-96.3	-99	10MHz Bandwidth
	Band 12	-93.3	-100.5	10MHz Bandwidth
	Band 13	-93.3	-102.5	10MHz Bandwidth
	Band 17	-93.3	-102.5	10MHz Bandwidth
	Band 18	-96.3	-102.5	10MHz Bandwidth
	Band 19	-96.3	-103	10MHz Bandwidth
	Band 20	-93.3	-102.5	10MHz Bandwidth
	Band 21	-96.3	-99	10MHz Bandwidth

Mode	Band	3GPP Requirement (dBm)	Rx Sensitivity (dBm) Typical	Note
	Band 26	-93.8	-103	10MHz Bandwidth
	Band 28	-94.8	-103	10MHz Bandwidth
	Band 29	-93.3	-101	10MHz Bandwidth
	Band 30	-95.3	-100.5	10MHz Bandwidth
	Band 66	-95.8	-101	10MHz Bandwidth
	Band 38	-96.3	-101	10MHz Bandwidth
LTE TDD	Band 39	-96.3	-101.5	10MHz Bandwidth
	Band 40	-96.3	-100.5	10MHz Bandwidth
	Band 41	-94.3	-100	10MHz Bandwidth

Note:

The above values are measured for the dual antennas situation (Main+Diversity). For single main antenna (without Diversity), the sensitivity will drop around 3dBm for each band of LTE.

4.5 GNSS

L850 module supports GNSS with D/G antenna, including GPS/GLONASS/BDS. GNSS feature and performance are as below table.

_		Test Result			
Description	Condition	MAX	Typical		
	GPS fixing	140mA@-130dBm	120mA@-130dBm		
Current	GPS tracking	140mA@-130dBm	120mA@-130dBm		
	GPS Sleep	3.5 mA@-130dBm	2.0mA@-130dBm		
	Cold start	50s@-130dBm	39s@-130dBm		
TTFF	Warm start	45s@-130dBm	33s@-130dBm		
	Hot Start	3s@-130dBm	2s@-130dBm		
	Tracking	-156dBm	-160dBm		
Sensitivity	Acquisition	-144dBm	-149dBm		

Note:

Please note that GNSS current is tested with RF disabled.

The L850 module provides main and diversity antenna interfaces, and the antenna design requirements are shown in the following table:

L850 Module Main Antenna R	equirements
Frequency range	The most proper antenna to adapt the frequencies should be used.
	WCDMA band 1(2100): 250 MHz
	WCDMA band 2(1900): 140 MHz
Bandwidth(WCDMA)	WCDMA band 4(1700): 445 MHz
	WCDMA band 5(850): 70 MHz
	WCDMA band 8(900): 80 MHz
	LTE band 1(2100): 250 MHz
	LTE band 2(1900): 140 MHz
	LTE Band 3(1800): 170 MHz
	LTE band 4(1700): 445 MHz
	LTE band 5(850): 70 MHz
	LTE band 7(2600): 190 MHz
	LTE Band 8(900): 80 MHz
	LTE Band 11(1500): 68 MHz
	LTE Band 12(700): 47 MHz
	LTE Band 13(700): 41 MHz
Bandwidth(LTE)	LTE Band 17(700): 42 MHz
	LTE Band 18(800): 80 MHz
	LTE Band 19(800): 80 MHz
	LTE band 20(800): 71 MHz
	LTE band 21(1500): 63 MHz
	LTE band 26(850): 80 MHz
	LTE band 28(700): 100 MHz
	LTE band 29(700): 12 MHz
	LTE band 30(2300): 55 MHz
	LTE band 66(1700): 490 MHz
	LTE band 38(2600): 50 MHz
	LTE Band 39(1900): 40 MHz

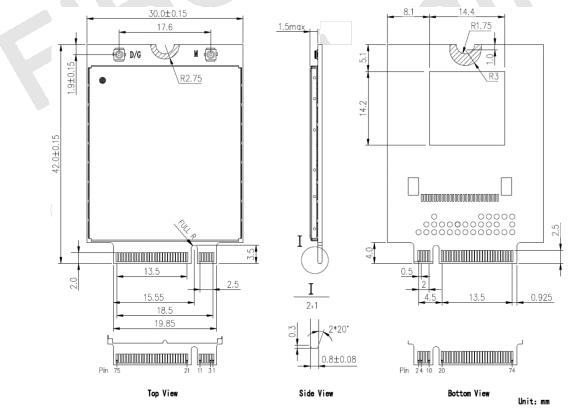
L850 Module Main Antenna Requirements			
	LTE band 40(2300): 100 MHz		
	LTE band 41(2500): 194 MHz		
	GPS: 2 MHz		
Bandwidth(GNSS)	GLONASS: 8 MHz		
	BDS: 4 MHz		
Impedance	50Ω		
Input power	> 26dBm average power WCDMA & LTE		
Recommended standing-wave ratio (SWR)	≤ 2: 1		

Note:

ANT on B30 suggestion: Peak gain < 0dBi, for FCC EIRP requirement, Efficient > 50% for carrier TRP requirement. If integrator doesn't follow the instruction, Fibocom doesn't take responsibility.

Fibccon 5 Structure Specification

5.1 Product Appearance


The product appearance for L850 module is shown in Figure5-1:

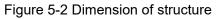


Figure 5-1 Module appearance

5.2 Dimension of Structure

The structural dimension of the L850 module is shown in Figure 5-2:

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All Rights Reserved.

5.3 M.2 Interface Model

The L850 M.2 module adopts 75-pin gold finger as external interface, where 67 pins are signal pins and 8 pins are notch pins as shown in Figure 3-1. For module dimension, please refer to <u>5.2 Dimension of Structure</u>. Based on the M.2 interface definition, L850 module adopts Type 3042-S3-B interface (30x42mm, the component maximum height on t top layer is 1.5mm, PCB thickness is 0.8mm, and KEY ID is B).

Key ID Pin Interface A 8-15 2x PCle x1 / USB 2.0 / I2C / DP x4 B 12-19 PCle x2/SATA/USB 2.0/USB 3.0/HSIC/SSIC/Audio/UIM/I2C C 16 22 30 11 2 12 16 31 1.2 12 16 32 1.35 30 15 0**** 10 12 1.35 30 1.5 1.35 12 1.35 1.35 30 1.5 1.35 110 1.5 1.5		3042-S3-B							
Width (mm) Icongto (mm) S1 1.2 0**** 12 26 33 1.5 0**** 30 12 38 0 1.2 1.35 0**** 30 1.2 1.2 1.35 0**** F 28.35 Future Memory Interface (FMI) 30 1.2 1.35 0**** G 39.46 Generic (Not used for M.2)*** 30 1.5 1.35 1.35 1.35 Reserved for Future Use 60 0 1.5 1.35 1.35 Reserved for Future Use 50 1.5 1.35 1.35 Reserved for Future Use 50 1.5 1.35 1.35 Reserved for Future Use 50 1.5 1.35 1.5 Reserved for Future Use 50 1.5 1.5 1.5 Reserved for Future Use 50 1.5 1.5 1.5 Reserved for Future Use	Type XX XX	- <u>XX - X - X</u> "							
Width (mm) Length (mm) Top Max ¹⁰ Bottom Max ¹⁰ B 12-19 PCIe x2/SATA/USB 2.0/USB 3.0/HSIC/SSIC/Audio/UIM/I2C 12 Top Max ¹⁰ Bottom Max ¹⁰ C 16-23 Reserved for Future Use 12 16 30 1.2 0**** C 16-23 Reserved for Future Use 30 16 S3 1.5 0**** E 24-31 2x PCIe x1 / USB 2.0 / I2C / SDIO / UART / PCM 16 30 1.5 0**** F 28-35 Future Memory Interface (FMI) 16 30 1.5 0**** G 39-46 Generic (Not used for M.2)*** 30 42 1.35 1.35 1.35 K 51-58 Reserved for Future Use 30 1.5 1.5 0.7 L 55-62 Reserved for Future Use							Key ID	Pin	Interface
Length (mm) Component Max Ht (mm) Component Max Ht (mm) C 16-23 Reserved for Future Use Width (mm) 16 S1 1.2 0**** D 20-27 Reserved for Future Use 12 26 S3 1.5 0**** E 2.431 2x PCle x1 / USB 2.0 / I2C / SDIO / UART / PCM 16 30 1.5 0**** G 39-46 Generic (Not used for M.2)*** 30 42 1.35 1.35 1.35 H 43-50 Reserved for Future Use 60 1.5 1.35 1.35 K 51-58 Reserved for Future Use 80 1.5 1.5 1.5 1.5 State L 55-62 Reserved for Future Use							А	8-15	2x PCIe x1 / USB 2.0 / I2C / DP x4
Width (mm) Length (mm) Top Max ^m Bottom Max ^m C 16-23 Reserved for Future Use 16 16 51 1.2 0***** D 20-27 Reserved for Future Use 12 26 53 1.5 0***** E 24-31 2x PCle x1 / USB 2.0 / I2C / SDIO / UART / PCM 16 30 D1 1.2 1.35 0***** F 28-35 Future Memory Interface (FMI) 16 30 D1 1.2 1.35 0***** G 39-46 Generic (Not used for M.2)*** 22 38 D2 1.35 1.35 H 43-50 Reserved for Future Use 30 42 D3 1.5 1.35 J 47-54 Reserved for Future Use 30 1.5 0.7 L 55-62 Reserved for Future Use		0					В	12-19	PCIe x2/SATA/USB 2.0/USB 3.0/HSIC/SSIC/Audio/UIM/I2C
Width (mm) S1 1.2 0***** D 20-27 Reserved for Future Use 12 16 52 1.35 0***** E 24.31 2x PCIe x1 / USB 2.0 / I2C / SDIO / UART / PCM 16 30 53 1.5 0***** F 28.35 Future Memory Interface (FMI) 16 30 D1 1.2 1.35 G 39-46 Generic (Not used for M.2)*** 22 38 D2 1.35 1.35 H 43-50 Reserved for Future Use 30 42 D3 1.5 0.7 H 43-50 Reserved for Future Use 60 D3 1.5 0.7 L 55-62 Reserved for Future Use					-		С	16-23	Reserved for Future Use
With (initi) 16 S2 1.35 0***** E 24-31 2x PCle x1 / USB 2.0 / I2C / SDIO / UART / PCM 12 26 S3 1.5 0***** F 28-35 Future Memory Interface (FMI) 16 30 D1 1.2 1.35 0***** G 39-46 Generic (Not used for M.2)*** 22 38 D2 1.35 1.35 H 43-50 Reserved for Future Use 30 42 D2 1.35 1.35 K 51-58 Reserved for Future Use 60 D4 1.5 0.7 L 55-62 Reserved for Future Use			Length (mm)		Contraction in the second		D	20-27	Reserved for Future Use
12 26 1.60 0 16 30 31 1.5 0***** 22 38 D1 1.2 1.35 30 42 D2 1.35 1.35 60 D3 1.5 0.7 80 D5 1.5 1.5		Width (mm)	16				E	24-31	2x PCle x1 / USB 2.0 / I2C / SDIO / UART / PCM
16 30 S3 1.5 0**** G 3946 Generic (Not used for M.2)*** 22 38 D1 1.2 1.35 H 43-50 Reserved for Future Use 30 42 D2 1.35 1.35 J 47-54 Reserved for Future Use 60 D3 1.5 0.7 L 55-62 Reserved for Future Use		12	26				F	28-35	Future Memory Interface (FMI)
22 38 D1 1.2 1.35 30 42 D2 1.35 1.35 60 D3 1.5 1.35 80 D4 1.5 0.7 95 1.5 1.5		16	30	S 3	1.5	0****	G		
30 42 D2 1.35 1.35 J 47-54 Reserved for Future Use 60 D3 1.5 1.35 K 51-58 Reserved for Future Use 80 D5 1.5 1.5 L 55-62 Reserved for Future Use		22	38	D1	1.2	1.35	-		•
60 D3 1.5 1.35 K 51-58 Reserved for Future Use 80 D4 1.5 0.7 L 55-62 Reserved for Future Use		30	42	D2	1.35	1.35			
80 D4 1.5 0.7 L 55-62 Reserved for Future Use				D3	1.5	1.35			
D5 15 15				D4	1.5	0.7			
			110	D5	1.5	1.5	M	59-66	PCle x4 / SATA

Use ONLY when a double slot is being specified

Label included in height dimension

Key G is intended for custom use. Devices with this key will not be M.2-compliant. Use at your own risk!

Figure 5-3 M.2 interface model

5.4 M.2 Connector

L850 module connects with host by M.2 connector which is built in host. The recommended part number is APCI0026-P001A manufactured by LOTES Corporation, and the dimensions is shown in Figure 5-4. The package of connector, please refer to the specification.

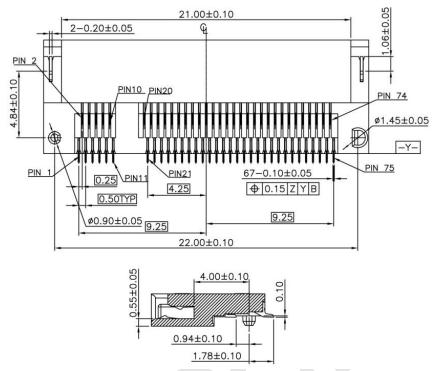


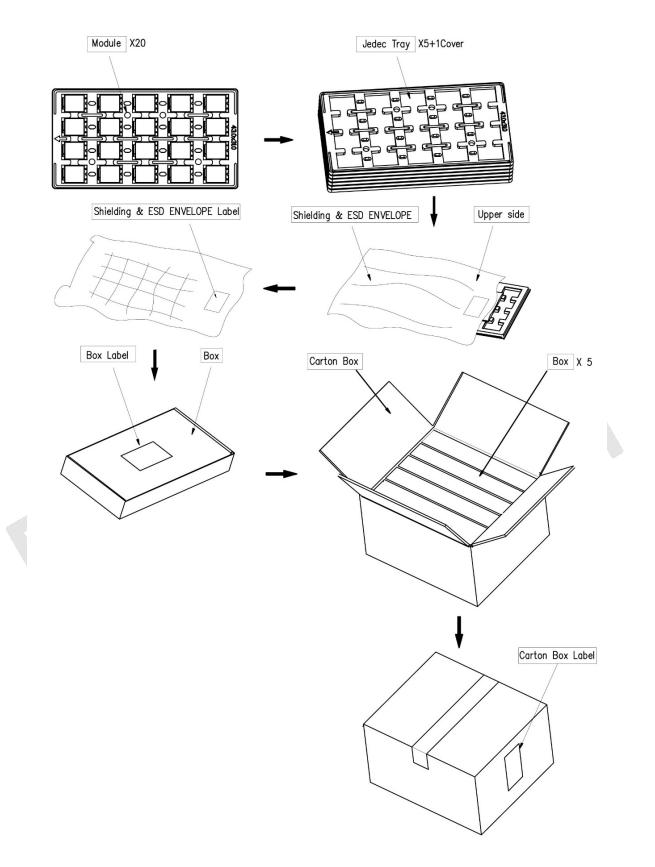
Figure 5-4 M.2 dimension of structure

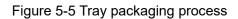
5.5 Storage

5.5.1 Storage Life

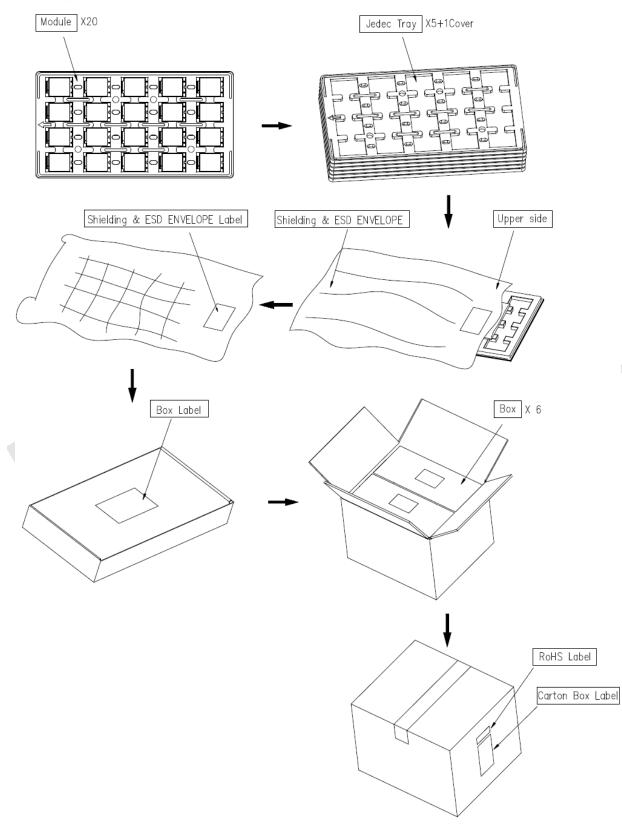
Storage Conditions (recommended): Temperature is $23 \pm 5^{\circ}$ C, relative humidity is less than RH 60%. Storage period: Under the recommended storage conditions, the storage life is 12 months.

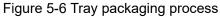
5.6 Packing

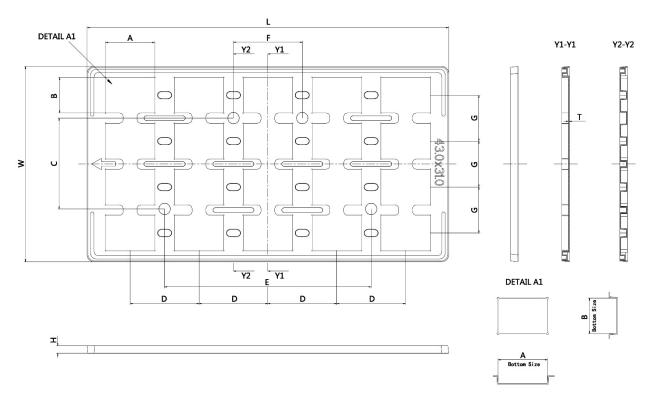

The L850 module uses the tray sealed packing, combined with the outer packing method using the hard cartoon box, so that the storage, transportation and the usage of modules can be protected to the greatest extent.

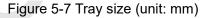


The module is a precision electronic product, and may suffer permanent damage if no correct electrostatic protection measures are taken.


5.6.1 Tray Package


L850-GL-01 serial module uses tray package, 20 pcs are packed in each tray, with 5 trays including one empty tray on top in each box and 5 boxes in each case. Tray packaging process is shown in Figure 5-5:


Other L850(except L850-GL-01 serial) module uses tray package, 20 pcs are packed in each tray, with 5 trays including one empty tray on top in each box and 6 boxes in each case. Tray packaging process is shown in Figure 5-6:



5.6.2 Tray Size

The pallet size of L850 module is 315×170×6.5mm, as shown in Figure 5-7:

DIM (Unit: mm)
315.0±2.0
170.0±2.0
6.5±0.3
0.8±0.1
43.0±0.3
31.0±0.3
79.0±0.2
60.0±0.2
180.0±0.2
60.0±0.2
40.0±0.2