[LeetCode] 1220. Count Vowels Permutation
2022-05-27 09:52:42

题目大意

  • 定义字符集 a, e, i, o, u
  • 定义字符连接规则
    • Each vowel a may only be followed by an e.
    • Each vowel e may only be followed by an a or an i.
    • Each vowel i may not be followed by another i.
    • Each vowel o may only be followed by an i or a u.
    • Each vowel u may only be followed by an a.
  • 结果对 $10^9 + 7$ 取模
  • 取值范围:$1 <= n <= 2 * 10^4$

问:对于给定的长度 $n$,存在多少种不同的字符串排列?

分析

根据题意可以绘出一个有向图。

计算得出各节点的出度和入度。

1
2
3
4
5
6
7
8
// outdegree
{
"a": 1,
"e": 2,
"i": 4,
"o": 2,
"u": 1
}
1
2
3
4
5
6
7
8
// indegree
{
"a": 3,
"e": 2,
"i": 2,
"o": 1,
"u": 2
}
  • 已知样例 $n$ 取值 1, 2, 5 时答案分别为 5, 10, 68。因为结果需要对大素数取模,而数据取值范围并不大,所以说明答案呈指数级增长。

求解

笔试时很不幸地抽中这道 hard 难度的 DP 题,没能写出来。事后发现当作模拟题来写其实也行,从 $n=1$ 的状态向上依次计算即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
def countVowelPermutation(self, n: int) -> int:
keys = ['a', 'e', 'i', 'o', 'u']
s = {'a': 1, 'e': 1, 'i': 1, 'o': 1, 'u': 1}
d1 = {
'a': 1,
'e': 2,
'i': 4,
'o': 2,
'u': 1
}
d2 = {
'a': ['e'],
'e': ['a', 'i'],
'i': ['a', 'e', 'o', 'u'],
'o': ['i', 'u'],
'u': ['a']
}
res = 5
for i in range(n - 1):
res = 0
for k in keys:
res += s[k] * d1[k]
t = {k: 0 for k in keys}
for k in keys:
for k2 in d2[k]:
t[k2] += s[k] % 1000000007
s = t
return res % 1000000007

至于 DP 的标准解法,关键在于得出状态转移方程。从前序状态的值计算得到当前状态值。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
// https://github.com/grandyang/leetcode/issues/1220
int countVowelPermutation(int n) {
int res = 0, M = 1e9 + 7;
vector<char> vowels{'a', 'e', 'i', 'o', 'u'};
vector<vector<long>> dp(n, vector<long>(5));

for (int j = 0; j < 5; ++j)
dp[0][j] = 1;

for (int i = 1; i < n; ++i) {
// 状态转移方程,对应每个字符的 indegree
dp[i][0] = (dp[i - 1][1] + dp[i - 1][2] + dp[i - 1][4]) % M;
dp[i][1] = (dp[i - 1][0] + dp[i - 1][2]) % M;
dp[i][2] = (dp[i - 1][1] + dp[i - 1][3]) % M;
dp[i][3] = dp[i - 1][2];
dp[i][4] = (dp[i - 1][2] + dp[i - 1][3]) % M;
}

for (int j = 0; j < 5; ++j)
res = (res + dp[n - 1][j]) % M;

return res;
}
Prev
2022-05-27 09:52:42
Next