

Nancy

ongzhou

TEST REPORT

Report Reference No...... TZ230804781-BLE

Applicant's name...... Yell Co.,Ltd

Manufacturer...... Shen Zhen M&I Import and Export Co., Ltd

Address..... Rm.19A03, Xin Lv Dao Building, No. 1175 Nanshan Avenue, Nanshan

Street, Nanshan District, 518000, Shenzhen, Guang Dong Province,

China

Test item description Smart Tracker

Trade Mark N/A

Model/Type reference YST-01

List Model N/A

Standard ARIB STD T-66 Ver.3.7

MIC Notice No.88 Appendix No.43 Article 2, paragraph 1, item 19

Date of receipt of test sample............ 2023/8/28

Date of testing...... 2023/8/28-2023/9/5

Result.....: PASS

Compiled by

(position+printed name+signature)..: File administrators Nancy Li

Supervised by

(position+printed name+signature)..: Project Engineer Hugo Chen

Approved by

(position+printed name+signature)..: General Manager Andy Zhang

Testing Laboratory Name...... Shenzhen Tongzhou Testing Co.,Ltd

Address 1th Floor, Building 1, Haomai High-tech Park, Huating Road 387,

Dalang Street, Longhua, Shenzhen, China

Shenzhen Tongzhou Testing Co.,Ltd All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Tongzhou Testing Co.,Ltd is acknowledged as copyright owner and source of the material. Shenzhen Tongzhou Testing Co.,Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

1

Report No.: TZ230804781-BLE

Contents

<u>1.</u>	IESI S	ANDARDS AND DESCRIPTION	3
	1.1.	Test Standards	3
	1.2.	Test description	3
<u>2.</u>	SUMMARY		4
	2.1.	Client Information	4
	2.2.	Product Description	4
	2.3.	EUT operation mode	5
	2.4.	Test Voltage	5
	2.5.	EUT configuration	5 5 5
	2.6.	Modifications	6
<u>3.</u>	TEST ENVIRO	NMENT	7
	3.1.	Address of the test laboratory	7
	3.2.	Statement of the measurement uncertainty	7
	3.3.	Equipments Used during the Test	8
<u>4.</u>	TEST CONDIT	TIONS AND RESULTS	9
	4.1.	Antenna Power	g
	4.2.	Frequency Error	11
	4.3.	Interference Prevention Function	13
	4.4.	Occuipied Bandwidth (99%)	14
	4.5.	Spectrum bandwidth (90%)	16
	4.6.	Spurious emission intensity	18
	4.7.	Limit of secondary radiated emissions	24
	4.8.	Transmission Antenna Gain (EIRP antenna power) Measurement	27
	4.9.	Transmission Radiation Angle Width (3db Beamwidth) Measurement	29
<u>5.</u>	TEST SETUP	PHOTOS OF THE EUT	30
6	EVTEDNA! A	ND INTERNAL PHOTOS OF THE EUT	31
<u>6.</u>	EVICKNAL A	NU INTERNAL FRUIUS OF THE EUI	<u>ა 1</u>

1. Test Standards and description

1.1. Test Standards

The tests were performed according to following standards:

Regulation: Item I of Article 49-20 and the relevant Articles of the ordinance of Regulatory Radio Equipment.

Report No.: TZ230804781-BLE

Test Method: (1)the test method suppassed on is equal to Appendix No.43 of MIC Nofication No 88

1.2. Test description

Test Item	Test Method	Result
Antenna Power	Appendix No.43 of MIC Nofication No 88 section 6	Pass
Frequency Error	Appendix No.43 of MIC Nofication No 88 section 3	Pass
Interference prevention function	Appendix No.43 of MIC Nofication No 88 section 12	Pass
99% Occupied bandwidth	Appendix No.43 of MIC Nofication No 88 section 4	Pass
Spread spectrum bandwidth	Appendix No.43 of MIC Nofication No 88 section 4	Pass
Spurious Emissions Intensity	Appendix No.43 of MIC Nofication No 88 section 5	Pass
Limit of secondary radiated emissions	Appendix No.43 of MIC Nofication No 88 section 7	Pass
Hopping Frequency Dwell Time Measurement	Appendix No.43 of MIC Nofication No 88 section 13	N/A
Transmission Antenna Gain (EIRP antenna power)	Appendix No.43 of MIC Nofication No 88 section 10	N/A
Transmission Radiation Angle Width (3db Beamwidth)	Appendix No.43 of MIC Nofication No 88 section 11	N/A
Carrier Sensing Function	Appendix No.43 of MIC Nofication No 88 section 8	N/A

N/A: means not applicable

2. Summary

2.1. Client Information

Applicant:	Yell Co.,Ltd
Address:	1/F Kanzawa Bldg, 3-8-8 Kuramae, Taito-ku, Tokyo 111-0051, Japan
Manufacturer:	Shen Zhen M&I Import and Export Co., Ltd
Address:	Rm.19A03, Xin Lv Dao Building, No. 1175 Nanshan Avenue, Nanshan Street, Nanshan District, 518000, Shenzhen, Guang Dong Province, China
Factory:	Shen Zhen M&I Import and Export Co., Ltd
Address:	Rm.19A03, Xin Lv Dao Building, No. 1175 Nanshan Avenue, Nanshan Street, Nanshan District, 518000, Shenzhen, Guang Dong Province, China

2.2. Product Description

Name of EUT:	Smart Tracker
Trade Mark:	N/A
Model/Type reference :	YST-01
List Model:	N/A
Hardware Version:	FM-YY-V2
Software Version:	V1.0
Power supply:	DC 3V by battery
Adapter information:	N/A
Bluetooth	
Supported type:	V5.2
	V5.2 GFSK
Supported type:	
Supported type: Modulation:	GFSK
Supported type: Modulation: Operation frequency:	GFSK 2402MHz~2480MHz
Supported type: Modulation: Operation frequency: Channel number:	GFSK 2402MHz~2480MHz 40

Operation Frequency List:

Channel	Frequency(MHz)	Channel	Frequency(MHz)
00	2402	20	2442
01	2404	21	2444
02	2406	22	2446
03	2408	23	2448
04	2410	24	2450
05	2412	25	2452
06	2414	26	2454
07	2416	27	2456
08	2418	28	2458
09	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

2.3. EUT operation mode

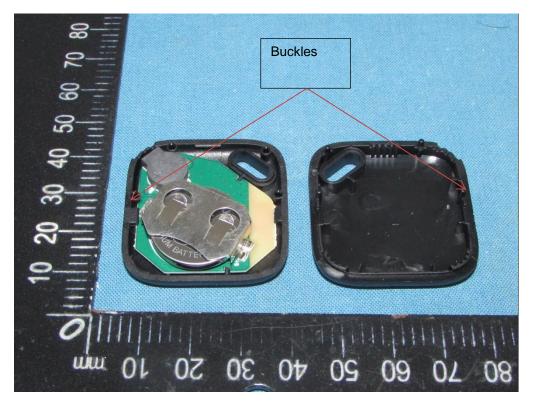
The EUT has been tested under typical operating condition. The Applicant provides software(LeKit_v2.5.2/ Power index: default) to control the EUT for staying in continous transmitting and receiving mode for testing.

2.4. Test Voltage

Voltage Fluctuation Test	Normal Voltage	High Voltage +10% of Normal Voltage	Low Voltage -10% of Normal Voltage
Input To EUT	DC 3.7V	DC 4.07V	DC 3.33 V
Voltage Variation (%)		+10%	-10%

2.5. EUT configuration

(1)The following peripheral devices and interface cables were connected during the measurement:


- supplied by the manufacturer
- - supplied by the lab

0	/ Length (m) :	/
	Shield:	/
	Detachable :	/
0	/ Manufacturer :	/
	Model No. :	/

(2) Protective Structure

The top and the bottom is connected with strong Buckles, So We can not open the it easily at the normal condition. The high-frequency section and modulation section can not be capable of being opened easily.

2.6. Modifications

No modifications were implemented to meet testing criteria.

3. Test Environment

3.1. Address of the test laboratory

Shenzhen Tongzhou Testing Co.,Ltd

1th Floor, Building 1, Haomai High-tech Park, Huating Road 387, Dalang Street, Longhua, Shenzhen, China

Report No.: TZ230804781-BLE

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2014) and CISPR Publication 22.

3.2. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Tongzhou Testing Co.,Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

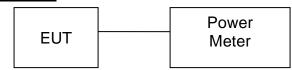
Hereafter the best measurement capability for Shenzhen Tongzhou Testing Co.,Ltd is reported:

Test Items	Measurement Uncertainty	Notes
Frequency stability	25 Hz	(1)
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9KHz-12.75 GHz	1.60 dB	(1)
Radiated spurious emission 9KHz-12.75 GHz	2.20 dB	(1)
Conducted Emission 9KHz-30MHz	3.39 dB	(1)
Radiated Emission 30~1000MHz	4.24 dB	(1)
Radiated Emissiom 1~18GHz	5.16 dB	(1)
Radiated Emissiom 18-40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)
Emission Mask		(1)
Modulation Characteristic		(1)
Transmitter Frequency Behavior		(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

3.3. Equipments Used during the Test

	Test Equipment								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Agency	Latest Cal.	Next Cal.		
1	MXA Signal Analyzer	Keysight	N9020A	MY52091623	CCIC	2022-12-28	2023-12-27		
2	EMI Test Receiver		ESCI	100849/003	CCIC	2022-12-28	2023-12-27		
3	DC power supply	Chroma	RXN-305D	62012PD02811	CCIC	2022-12-28	2023-12-27		
4	Power Meter	Agilent	NRVD	835843/014	CCIC	2022-12-28	2023-12-27		
5	Wideband Radio Communication R&S Tester		CMW500	101855	CCIC	2022-12-28	2023-12-27		
6	Oscilloscope	Tektronix	TDS2024C	C044925	CCIC	2022-12-28	2023-12-27		


Calibration by the calibration agencies listed in the table correspond to paragraph 4 (ii) (c) of Article 24-2 in the Radio Law.

4. Test conditions and Results

4.1. Antenna Power

TEST CONFIGURATION

TEST PROCEDURE

- 1. EUT have transmitted continuous maximum power...
- 2. Frequency hopping system or combined systems of direct spread and frequency hopping
 - i. Connect the high frequency Power Meter or Spectrum Analyzer to the output of the attenuator and measure the total power (without bandwidth limitation)
 - ii. Divide the total power by the spread bandwidth to find the "average" power per MHz.

The average power per MHz is equal to the power meter value dBm + cable loss dB.

- iii. Set the antenna power as follows:
- Continuous waves: value in ii.

LIMIT

Item	Limits
A.1	\leq 3mW/MHz (FH form 2400~2483.5MHz)
Antenna Power Density	\leq 10mW/MHz (OFDM,DS from 2400~2483.5MHz)
	\leq 10mW (Other from 2400~2483.5MHz)
Antenna Power Error	+20%, -80% (Base on manufacturer declare antenna power density)

Page 10 of 38 Report No.: TZ230804781-BLE

Antenna Power									
TestCondition	TestMode	Antenna	Channel	Result(dBm)	Result	Limit	\/ordiot		
restcondition	restivioue	Antenna	Chamei	Result(ubili)	(mW)	(mW)	verdict		
			2402	-4.43	0.3606	≤10	PASS		
NTNV	IV BLE_1M	BLE_1M Ant	Ant1	2440	-3.97	0.4009	≤10	PASS PASS PASS PASS PASS PASS	
			2480	-3.97	0.4009	≤10	PASS		
			2402	-4.373	0.3653	≤10	PASS		
NTHV	BLE_1M	BLE_1M Ant1	2440	-3.719	0.4247	≤10	PASS		
			2480	-3.943	0.4034	≤10	PASS		
			2402	-4.409	0.3623	≤10	PASS		
NTLV	BLE_1M	Ant1	2440	-3.954	0.4023	≤10	PASS		
			2480	-3.627	0.4338	≤10	PASS		

Tolerance								
Test	Test	Antonno	Channel	Power	RatedPower	Dogult (0/)	Limit (0/)	Vardiet
Condition	Mode	Antenna	Channel	(mW)	(mW)	Result (%)	Limit (%)	verdict
			2402	0.3606	0.4	-9.85	-80 to +20	PASS
NTNV	BLE_1M	Ant1	2440	0.4009	0.4	0.22	-80 to +20	PASS
			2480	0.4009	0.4	0.22	-80 to +20	
			2402	0.3798	0.4	-5.05	-80 to +20	PASS
NTHV	BLE_1M	Ant1	2440	0.4187	0.4	4.68	-80 to +20	PASS
			2480	0.432	0.4	8	-80 to +20	PASS
			2402	0.3653	0.4	-8.68	-80 to +20	PASS
NTLV	BLE_1M	Ant1	2440	0.4038	0.4	0.95	-80 to +20	PASS
			2480	0.4094	0.4	2.35	-80 to +20	PASS

- 1, The item was tested at 25 $\mathcal C$ and 55% humidity condition; 2, Result = the power meter value + cable loss

Page 11 of 38 Report No.: TZ230804781-BLE

4.2. Frequency Error

TEST CONFIGURATION

EUT SPECTRUM ANALYZER

TEST PROCEDURE

The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram as TEST CONFIGURATION shows.

EUT Condition: non-modulation

Spectrum Condition: Frequency: test frequency

Span:1MHz Rbw:10KHz Vbw:10KHz Sweep time:Auto

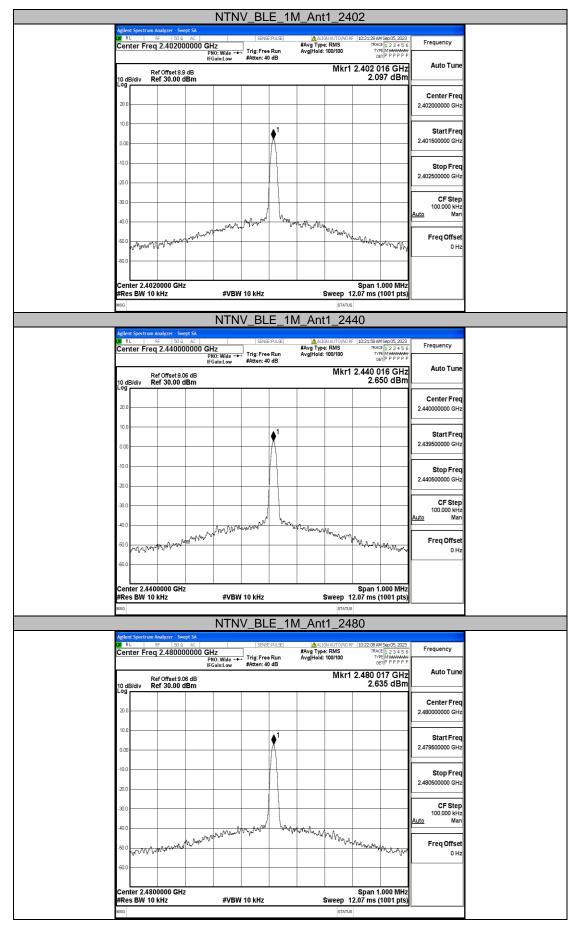
Dectector mode: Positive peak Indication mode: max hold

<u>LIMIT</u>

Tolerance of frequency shall be ±50 ppm.

TEST RESULTS

Test Condition	Test Mode	Antenna	Freq(MHz)	Result[ppm]	Limit[ppm]	Verdict
			2402	6.66112	±50	PASS
NTNV	CW	Ant1	2441	6.55738	±50	PASS
			2480	6.85484	±50	PASS
		Ant1	2402	6.37546	±50	PASS
NTHV	NTHV CW		2441	6.0318	±50	PASS
		2480	6.35017	±50	PASS	
			2402	6.43159	±50	PASS
NTLV	CW	Ant1	2441	6.0898	±50	PASS
			2480	6.62638	±50	PASS


Note: 1. The test results including the cable lose.

2. The item was tested at 25 $^{\circ}$ C and 55% humidity condition;

3.All condition has been testd, list the worst case in this item

Test plot as follows:

Page 13 of 38 Report No.: TZ230804781-BLE

4.3. Interference Prevention Function

The device consists of the Print PCB antenna and 2.4GHz transimtter module.Component 2.4GHz transmitter module also can use the protocol function to protect interference come from outside.

TEST EQUIPMENT

Wideband Radio Communication Tester(CMW500)

TEST SOFTWARE

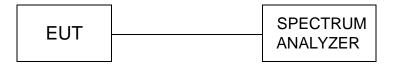
N/A

TEST PROCEDURE

Connect EUT to CMW500, Enter signal Mode, and read the MAC

TEST RESULTS

The unit does meet the requirements.


MAC Address: 23:A6:D2:84:2C:01

4.4. Occuipied Bandwidth (99%)

TEST CONFIGURATION

TEST PROCEDURE

The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram as TEST CONFIGURATION shows.

EUT Condition: modulation Spectrum Condition:

Frequency: Center frequency in the band to be used

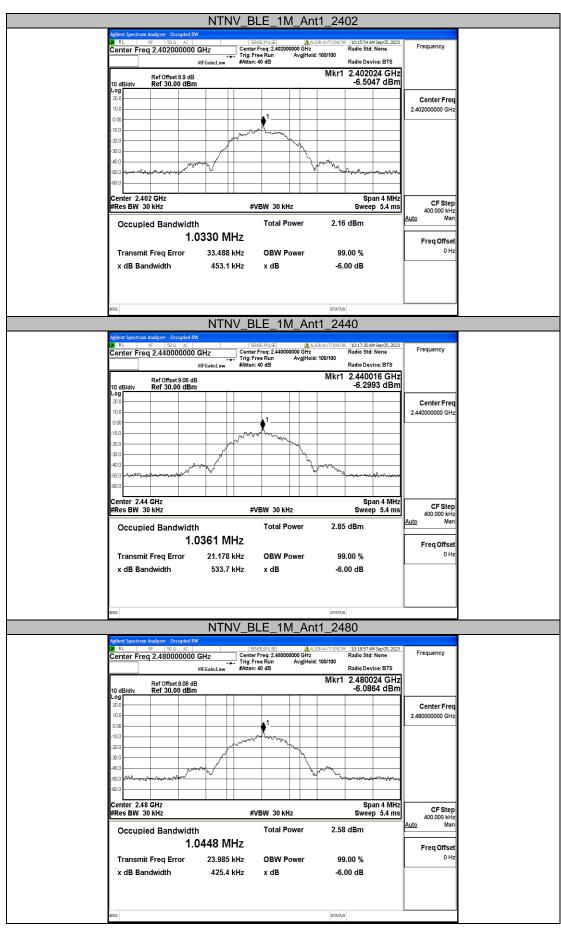
Span:4MHz RBW: 30kHz VBW: 30kHz Sweep time:Auto

Dectector mode: Positive peak Indication mode: max hold

LIMIT

Permissible value for occupied bandwidth using the FH system, a hybrid system combining DS and FH systems, or a hybrid system combining FH and OFDM systems shall be 83.5 MHz or less, while necessary bandwidth (minimum occupied bandwidth sufficient to ensure information transmission of required quality at a required transmission rate for the system used under specified conditions for a given emission type) using a system other than any of the above shall be 26 MHz or less.

TEST RESULTS

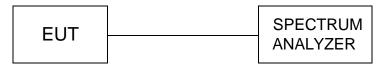

TestCondition	TestMode	Antenna	Channel	Result [MHz]	Limit [MHz]	Verdict
		Ant1	2402	1.033	≤26	PASS
NTNV	BLE_1M		2440	1.036	≤26	PASS
			2480	1.045	≤26	PASS
	BLE_1M	Ant1	2402	1.013	≤26	PASS
NTHV			2440	1.033	≤26	PASS
			2480	1.014	≤26	PASS
	BLE_1M	Ant1	2402	0.944	≤26	PASS
NTLV			2440	0.964	≤26	PASS
			2480	0.956	≤26	PASS

Note: 1. The test results including the cable lose.

2. The item was tested at 25 \mathcal{C} and 55% humidity condition;

3.All condition has been testd, list the worst case in this item

T



4.5. Spectrum bandwidth (90%)

TEST CONFIGURATION

TEST PROCEDURE

The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram as TEST CONFIGURATION shows.

EUT Condition: modulation Spectrum Condition:

Frequency: Center frequency in the band to be used

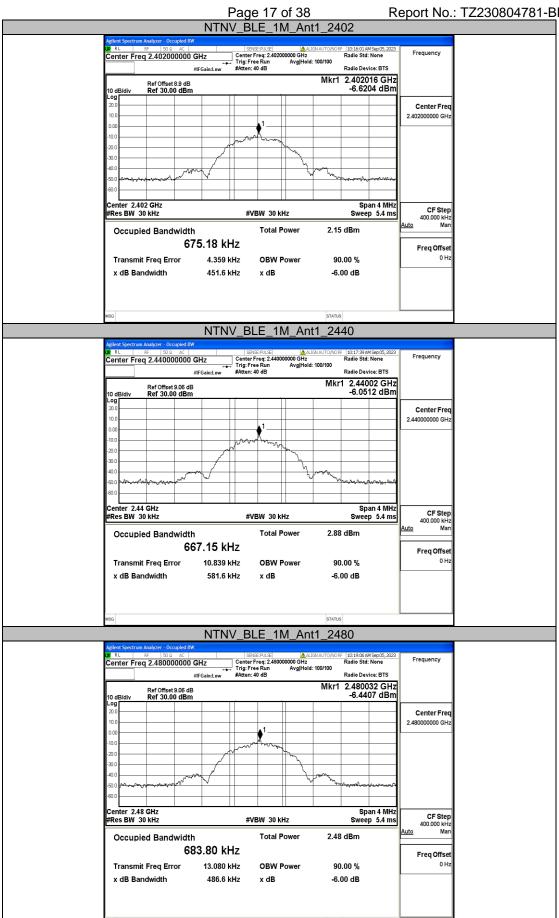
Span:4MHz RBW:30kHz VBW: 30kHz Sweep time:Auto

Dectector mode: Positive peak Indication mode: max hold

Spread Factor = Spread Bandwidth/ Transsmission rate

<u>LIMIT</u>

In spread spectrum systems, spread bandwidth (which refers to a frequency bandwidth with an upper limit and lower limit such that each of the mean powers radiated above the upper frequency limit and below the lower frequency limit is equal to 5 % of the total mean power radiated; this also applies hereafter) shall be 500 kHz or more.


TEST RESULTS

TestCondition	TestMode	Antenna	Channel	Result [MHz]	Limit [MHz]	Verdict
		Ant1	2402	0.675	≥0.5	PASS
NTNV	BLE_1M		2440	0.667	≥0.5	PASS
			2480	0.684	≥0.5	PASS
		Ant1	2402	0.66	≥0.5	PASS
NTHV	BLE_1M		2440	0.643	≥0.5	PASS
			2480	0.677	≥0.5	PASS
	BLE_1M	Ant1	2402	0.629	≥0.5	PASS
NTLV			2440	0.609	≥0.5	PASS
			2480	0.652	≥0.5	PASS

Note: 1. The test results including the cable lose.

2. The item was tested at 25 $\ensuremath{\mathcal{C}}$ and 55% humidity condition;

3.All condition has been testd, list the worst case in this item

Page 18 of 38 Report No.: TZ230804781-BLE

4.6. Spurious emission intensity

TEST CONFIGURATION

EUT SPECTRUM ANALYZER

TEST PROCEDURE

The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram as TEST CONFIGURATION shows.

EUT Condition: modulation Spectrum Condition: Frequency: 30MHz-13GHz

RBW: 1MHz (30MHz-13GHz) VBW: 1MHz (30MHz-13GHz)

Sweep time:Auto

Dectector mode: Positive peak Indication mode: max hold

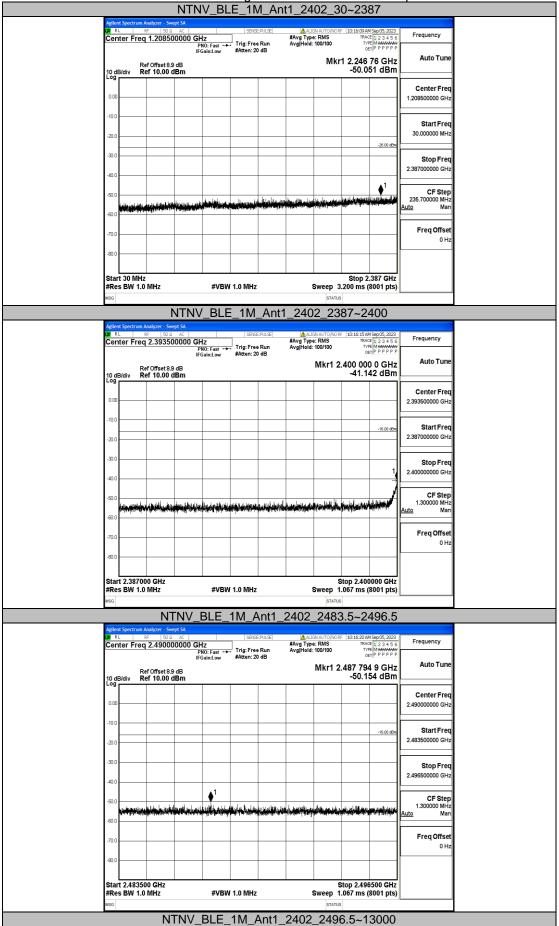
LIMIT

Permissible mean power of spurious emission of each frequency supplied to a feeder, that is, mean power of spurious emission in the 1 MHz bandwidth at frequency f other than frequency band used shall be as follows: a. 2,387 MHz \leq f \leq 2,400 MHz and 2,483.5 MHz < f \leq 2,496.5 MHz \leq 25 μ W(-16dBm) or less b. 2,387 MHz > f and 2,496.5 MHz < f \leq 2.5 μ W(-26dBm) or less

TEST RESULTS

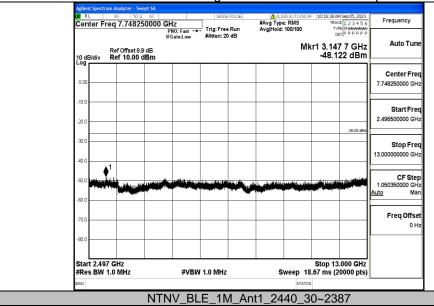
Test	Test	At	F===(A411=)	Freq.Range	Result	Limit	\
Condition	Mode	Antenna	Freq(MHz)	[MHz]	[dBm]	[dBm]	Verdict
			0.400	30~2387	-50.05	≤-26	PASS
				2387~2400	-41.14	≤-16	PASS
			2402	2483.5~2496.5	-50.15	≤-16	PASS
				2496.5~13000	-48.12	≤-26	PASS
				30~2387	-49.75	≤-26	PASS
NTNV	BLE_1M	Ant1	2440	2387~2400	-50.95	≤-16	PASS
INTINV	DLE_IIVI	Anti	2440	2483.5~2496.5	-50.86	≤-16	PASS
				2496.5~13000	-47.04	≤-26	PASS
			2480	30~2387	-50.37	≤-26	PASS
				2387~2400	-50.8	≤-16	PASS
				2483.5~2496.5	-50.66	≤-16	PASS
				2496.5~13000	-48.06	≤-26	PASS
			2402	30~2387	-50.72	≤-26	PASS
				2387~2400	-42.7	≤-16	PASS
		LE_1M Ant1		2483.5~2496.5	-50.82	≤-16	PASS
				2496.5~13000	-49.46	≤-26	PASS
NTHV	BLE_1M			30~2387	-51.07	≤-26	PASS
			2440	2387~2400	-52.55	≤-16	PASS
			∠ 44 0	2483.5~2496.5	-51.71	≤-16	PASS
			Ţ	2496.5~13000	-48.37	≤-26	PASS
			2480	30~2387	-52.32	≤-26	PASS

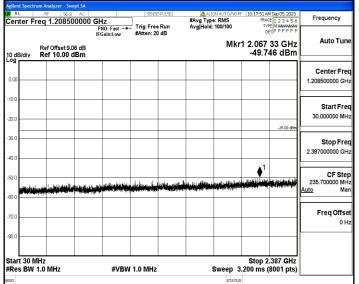
	1
(4	بالا
	U
7	

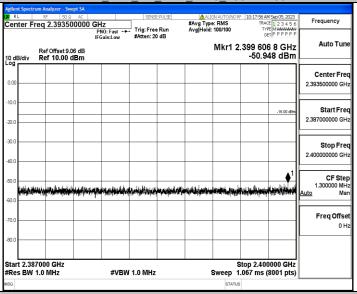

Page 19 of 38 Report No.: TZ230804781-BLE 2387~2400 -51.88 ≤-16 **PASS** 2483.5~2496.5 -51.33 ≤-16 **PASS** -49.1 ≤-26 **PASS** 2496.5~13000 **PASS** 30~2387 -51.33 ≤-26 2387~2400 -42.18 ≤-16 **PASS** 2402 **PASS** 2483.5~2496.5 -50.9 ≤-16 PASS 2496.5~13000 ≤-26 -49.3 30~2387 -51.59 ≤-26 **PASS** 2387~2400 -52.29 ≤-16 **PASS** NTLV BLE_1M Ant1 2440 2483.5~2496.5 -52.24 ≤-16 **PASS** 2496.5~13000 -48.77 ≤-26 **PASS** 30~2387 -51.12 ≤-26 **PASS** 2387~2400 -51.61 ≤-16 **PASS** 2480 2483.5~2496.5 -52.29 ≤-16 **PASS** ≤-26 2496.5~13000 -49.51 **PASS**

Note: 1.The product was tested at 25 ${\mathcal C}$ and 55% humidity condition;

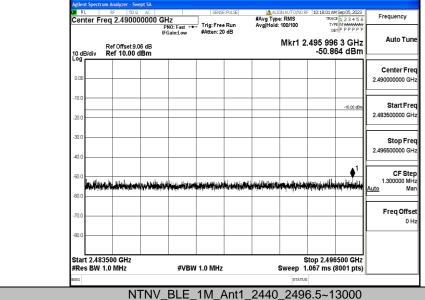
- 2.All condition has been testd, list the worst case in this item
- 3. SA set to from 2.4965GHz to 13GHz, plot shows from 2.497GHz to 13GHz as of SA's default format.

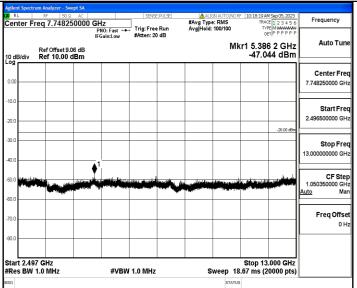



Page 20 of 38 Report No.: TZ230804781-BLE

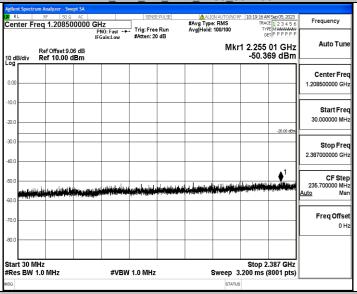


Page 21 of 38 Report No.: TZ230804781-BLE

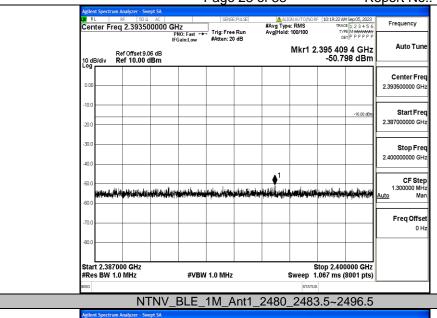

NTNV_BLE_1M_Ant1_2440_2387~2400

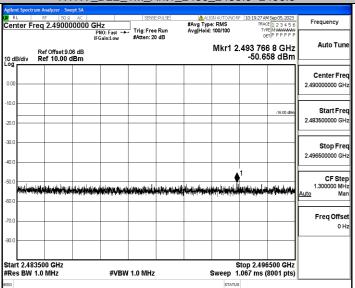


NTNV_BLE_1M_Ant1_2440_2483.5~2496.5

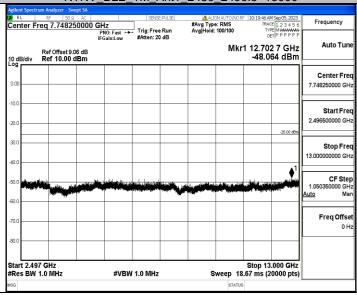


Page 22 of 38 Report No.: TZ230804781-BLE


NTNV_BLE_1M_Ant1_2480_30~2387



NTNV_BLE_1M_Ant1_2480_2387~2400



Page 23 of 38 Report No.: TZ230804781-BLE

NTNV_BLE_1M_Ant1_2480_2496.5~13000

Page 24 of 38

Report No.: TZ230804781-BLE 4.7. Limit of secondary radiated emissions

TEST CONFIGURATION

SPECTRUM **EUT ANALYZER**

TEST PROCEDURE

The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram as TEST CONFIGURATION shows.

EUT Condition: modulation Spectrum Condition: Frequency: 30MHz-13GHz

RBW:100KHz(30MHz-1GHz), 1MHz(1GHz-13GHz) VBW:100KHz(30MHz-1GHz), 1MHz(1GHz-13GHz)

Sweep time:Auto

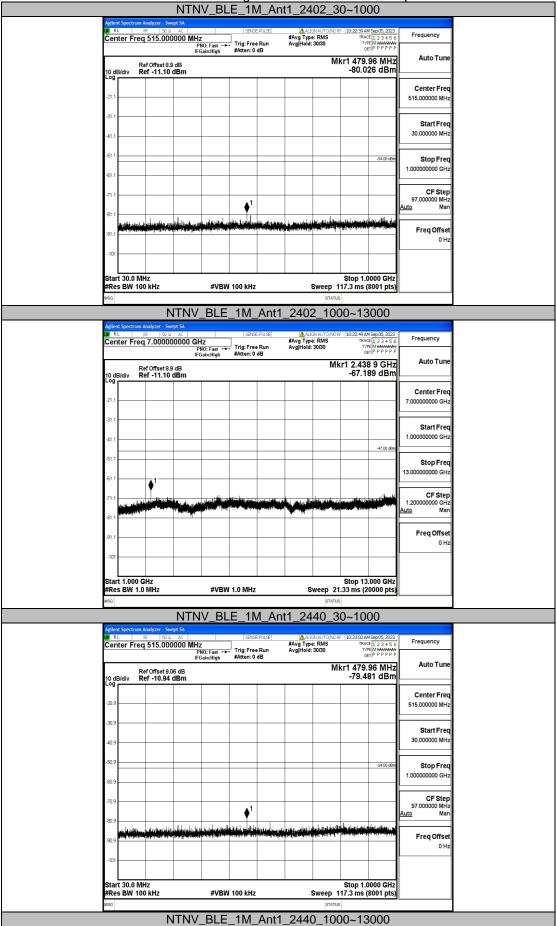
Dectector mode: Positive peak Indication mode: max hold

LIMIT

The limit on secondary emissions radiated from the receiving equipment within which the function of other radio equipment will not be impaired shall be, in terms of the power of a dummy antenna circuit that has the same electrical constant as the receiving antenna, 4 nW or less at a frequency below 1 GHz and 20 nW or less at a frequency of 1 GHz or higher as measured using the circuit

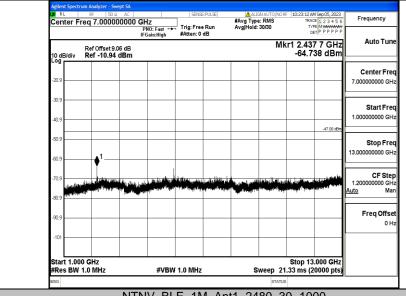
TEST RESULTS

Test	Test	A t	Freq(MHz)	Freq.Range	Result	Limit	\
Condition	Mode	Antenna		[MHz]	[dBm]	[dBm]	Verdict
			2402	30~1000	-80.03	≤-54	PASS
				1000~13000	-67.19	≤-47	PASS
NTNV	BLE 1M	Ant1	2440	30~1000	-79.48	≤-54	PASS
INTINV	DLE_TIVI	AIILI	2440	1000~13000	-64.74	≤-47	PASS
			2480	30~1000	-80.37	≤-54	PASS
			2400	1000~13000	-66.5	≤-47	PASS
		Ant1	2402	30~1000	-78.89	≤-54	PASS
				1000~13000	-65.6	≤-47	PASS
NTHV	BLE_1M		2440	30~1000	-78.26	≤-54	PASS
INITIV				1000~13000	-63.83	≤-47	PASS
			2480	30~1000	-79.05	≤-54	PASS
				1000~13000	-65.36	≤-47	PASS
		Ant1	2402	30~1000	-78.19	≤-54	PASS
	BLE_1M			1000~13000	-64.04	≤-47	PASS
NTLV			2440	30~1000	-76.5	≤-54	PASS
INILV				1000~13000	-62.64	≤-47	PASS
			2480	30~1000	-78.51	≤-54	PASS
				1000~13000	-63.62	≤-47	PASS

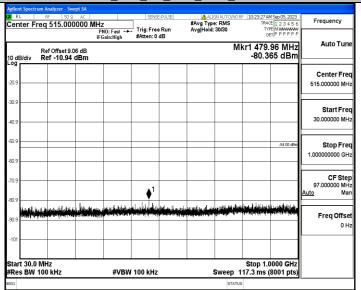

Note: 1. The product was tested at 25 $^{\circ}$ C and 55% humidity condition;

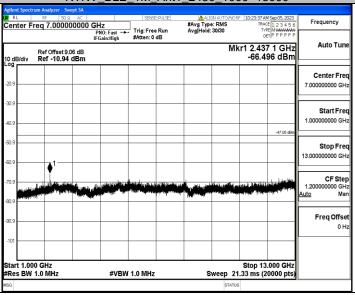
2.All condition has been testd, list the worst case in this item

Test plot as follows:



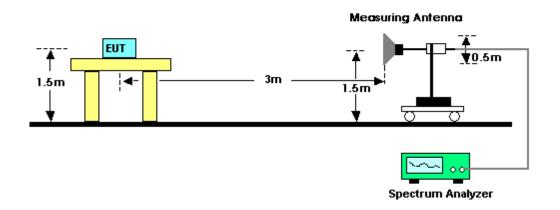
Page 25 of 38 Report No.: TZ230804781-BLE



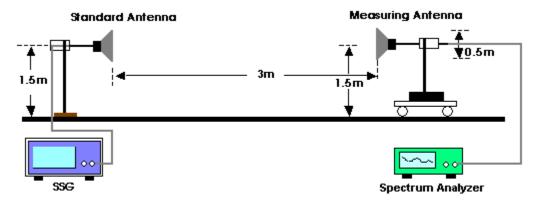

Page 26 of 38 Report No.: TZ230804781-BLE

NTNV_BLE_1M_Ant1_2480_30~1000

NTNV_BLE_1M_Ant1_2480_1000~13000



Page 27 of 38 Report No.: TZ230804781-BLE


4.8. Transmission Antenna Gain (EIRP antenna power) Measurement

TEST CONFIGURATION

For EUT radiation measurement

For standard antenna measurement

TEST PROCEDURE

- 1. Set EUT ad measuring antenna at the same height and roughly facing each other.
- 2. Move the measuring antenna height up and down within ± 50cm of EUT height and swing it to find the maximum output of the measuring antenna. The output level at the spectrum analyzer is read sa "E".
- 3. Remove the EUT from the turn table and put the replacing antenna facing to measuring antenna at same height. Set the standard signal generator (SSG) at same frequency and transmit on then receive the signal
- 4. Swing the replacing antenna give a maximum receiving level.
- 5. Move the measuring antenna height up and down within ± 50cm of replacing antenna height and swing it to find the maximum receiving level.
- 6. Set SSG output power at Pt to give the equivalent output level of "E" or caluate Pt with SSG output which gives the nearest of "E" and difference (± 1dB). Record
- 7. Calculate EIRP by the formula below EIRP = Gt L + Pt.

Gt: gain of replacing antenna (dBi)

L: feeder loss between SSG and replacing antenna

Pt: Output power of the SSG

8. If the antenna for the EUT has circular polarization, sum of V-field and H-field

Page 28 of 38

Report No.: TZ230804781-BLE

will be result if measuring antenna is linear polarization.

<u>LIMIT</u>

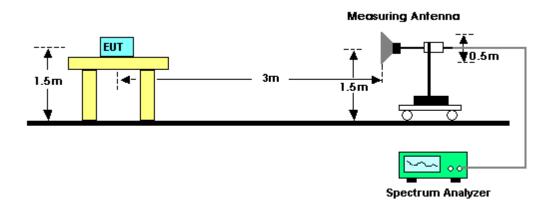
	Antenna nower	EIRP (max.)		
Frequency band used	(max.)	Omnidirectional case	Directional case	
2,400 - 2,483.5 MHz	10 mW/MHz	12.14 dBm/MHz	22.14 dBm/MHz	
2,400 - 2,483.5 MHz	3 mW/MHz	6.91 dBm/MHz	16.91 dBm/MHz	
Excluding 2,427 - 2,470.75 MHz	10 mW/MHz	12.14 dBm/MHz	22.14 dBm/MHz	
2,400 - 2,483.5 MHz	10 mW	12.14 dBm	22.14 dBm	
	2,400 - 2,483.5 MHz Excluding 2,427 - 2,470.75 MHz	2,400 - 2,483.5 MHz 10 mW/MHz 2,400 - 2,483.5 MHz 3 mW/MHz Excluding 2,427 - 2,470.75 MHz 10 mW/MHz	Frequency band used Antenna power (max.) Omnidirectional case 2,400 - 2,483.5 MHz 10 mW/MHz 12.14 dBm/MHz 2,400 - 2,483.5 MHz 3 mW/MHz 6.91 dBm/MHz Excluding 2,427 - 2,470.75 MHz 10 mW/MHz 12.14 dBm/MHz	

Note: it is not applicable when Antenna gain do not exceed 2.14 dBi.

TEST RESULTS

N/A

AS:


⊠Antenna gain do not exceed than 2.14 dBi

Page 29 of 38 Report No.: TZ230804781-BLE

I.9. Transmission Radiation Angle Width (3db Beamwidth) Measurement

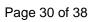
TEST CONFIGURATION

TEST PROCEDURE

- 1. Set EUT and measuring antenna at the same height and roughly facing each other.
- 2. Set spectrum analyzer with condition in section 4.8 and tune reference level to observe receving signal position.
- 3. Rotate directions of the EUT horizontally and ertically to find the maximum receiving power.
- 4. Move the measuring antenna height up and down within ± 50cm of EUT height and swing it to find the maximum output of measuring antenna. The output level at the spectrum analyzer is read as "E"
- 5. Caluate permitted radiation angle in horizontal and vertical using EIRP measured in another test method.
- 6. Calculate 3dB antenna beam width by the formula below 360/A (If A<1; then A=1).</p>
 A = { EIRP Power [mW] / 16.36 for DS, OFDM} = { EIRP Power [dBm] / 12.14 for DS, OFDM} or
 A = { EIRP Power [mW] / 4.9 for FH}={ EIRP Power [dBm] / 6.91 for FH}

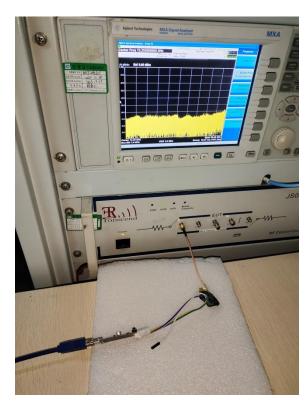
LIMIT

Item	Upper Limits			
3dB antenna beam width	360/A (If A<1; then A=1) A = {EIRP [mW] / 16.36 for DS, OFDM} or A = {EIRP [mW] / 4.9 for FH}			
Note: it is not applicable when Antenna gain do not exceed 2.14 dBi or EIRP do not exceed the omnidirectional EIRP upper limit				


TEST RESULTS

N/A

AS:

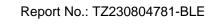

Antenna gain do not exceed than 2.14 dBi

EIRP do not exceed the omnidirectional EIRP upper limit

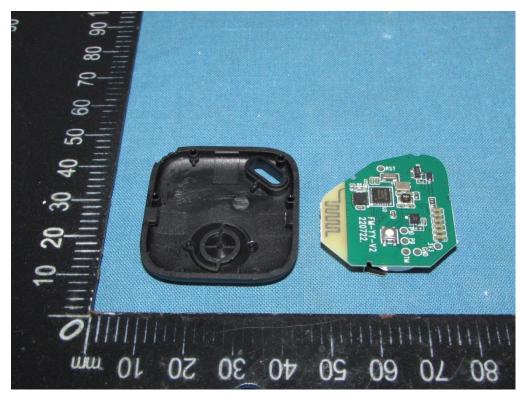
5. Test Setup Photos of the EUT

6. External and Internal Photos of the EUT

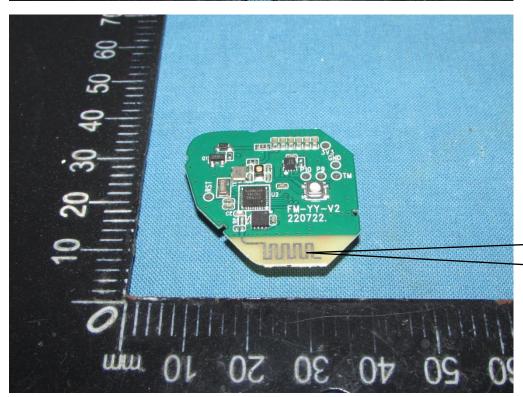
Page 32 of 38 Report No.: TZ230804781-BLE



Page 34 of 38 Report No.: TZ230804781-BLE

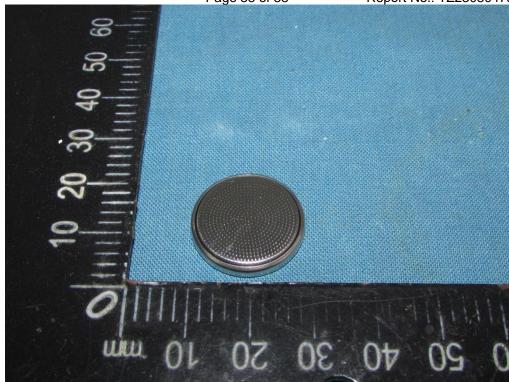


Page 35 of 38 Internal Photos



Page 36 of 38 Report No.: TZ230804781-BLE

Bluetooth Antenna



Page 38 of 38 Report No.: TZ230804781-BLE

.....End of Report.....